

SpyWorksTM
 Version 8.0
 for Visual Studio .NET

 by

 Desaware, Inc.

Rev 8.0.0 (11/06)

 - 1 -

Information in this document is subject to change without notice and does not represent a commitment on the part of
Desaware, Inc. The software described in this document is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. It is against the law to copy the software on any
medium except as specifically allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, for any purpose without the express written permission of Desaware, Inc.
Copyright © 1994-2006 by Desaware, Inc. All rights reserved. Printed in the U.S.A.

 - 2 -

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return the product and
all accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed to you for your use only. If you, personally, have more than one computer,
you may install it on all of your computers as long as there is no possibility of it being used concurrently at
more than one location by separate individuals. You may (and should) make archival copies of the
software for backup purposes.

You may transfer this software and license as long as you include this license, the software and all other
materials and retain no copies, and the recipient agrees to the terms of this agreement.

You may not make copies of this software for other people. Companies or schools interested in multiple
copy licenses or site licenses should contact Desaware, Inc. directly at (408) 404-4760.

Should your intent be to purchase this product for use in developing a compiled Visual Basic program that
you will distribute as an executable (.exe) file, review the listing of which files (located below and in the
File Description section of the product manual) can be distributed and or modified. If Desaware files are
included in your executable program, you must include a valid copyright notice on all copies of the
program. This can be either your own copyright notice, or “Copyright © 2006 Desaware, Inc. All rights
reserved.”.

You have a royalty-free right to incorporate any of the sample code provided into your own applications
with the stipulation that you agree that Desaware, Inc. has no warranty, obligation or liability, real or
implied, for its performance.

SpyWorks .NET Compiled Files: You may include with your program a copy of the files
dwsbc80.ocx, dwshk80dwshk80.ocx, Desaware.shcomponent11.dll, Desaware.shcomponent20.dll, and
dwshengine80.dll. You may also distribute DLL files created using the ExportWizard.exe utility programs.
You may not modify the files listed above in any way.

SpyWorks .NET Source Files: Source code for portions of SpyWorks are included for educational
purposes only. You may use this source code in your own applications only if they provide primary and
significant functionality beyond that included in the SpyWorks package. You may not use this source code
to develop or distribute components and tools that provide functionality similar to all or part of the
functionality provided by any of the components or tools included in the SpyWorks package.

Please consult the topic File Descriptions for additional information.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Visual Studio, Windows, Windows 95, Windows 98, Windows ME, Windows NT,
Windows 2000, and Windows XP are trademarks of Microsoft Corporation.
SpyWorks, NT Service Toolkit, StateCoder, VersionStamper, StorageTools, Event Log Toolkit, ActiveX Gallimaufry, Custom Control Factory, and SpyNotes #2,
The Common Dialog Toolkit are trademarks of Desaware, Inc.

 - 3 -

Limited Warranty

Desaware, Inc. warrants the physical CD and physical documentation enclosed herein to be free of defects
in materials and workmanship for a period of sixty days from the date of purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to
replacement of defective CD(s) or documentation and shall not include or extend to any claim for or right
to recover any other damages, including but not limited to, loss of profit, data or use of the software, or
special, incidental or consequential damages or other similar claims, even if Desaware, Inc. has been
specifically advised of the possibility of such damages. In no event will Desaware, Inc.'s liability for any
damages to you or any other person ever exceed the suggested list price or actual price paid for the license
to use the software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, Desaware, Inc.
makes no representation or warranty that the software is fit for any particular purpose and any implied
warranty of merchantability is limited to the sixty-day duration of the Limited Warranty covering the
physical CD and documentation only (not the software) and is otherwise expressly and specifically
disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws of the State of
California, and any action hereunder shall be brought only in California. If any provision is found void,
invalid or unenforceable it will not affect the validity of the balance of this License and Limited Warranty,
which shall remain valid and enforceable according to its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer Software - Restricted
Rights at 48 CFR 52.227-19, as applicable. Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park
Drive, Suite 48, San Jose, California 95136

 - 4 -

Introduction... 8

New for version 8.0... 8
SpyWorks and Visual Studio .NET .. 9

Subclassing and Hooking.. 9
Function Export .. 9
Known issues with Visual Studio .NET and other general comments 9

File Descriptions ... 10
Compatibility Issues.. 11
Migrating SpyWorks 7.1 Projects to SpyWorks 8.0... 11
Migrating Visual Basic 6.0 Projects to .NET ... 11

Learning .NET .. 12
Migrating Visual Basic 6.0 projects.. 12
Deciding on which Subclass and WinHook component to use in .NET 12
Migrating SpyWorks Subclass and WinHook ATL based ActiveX controls........... 12

Using SpyWorks (Please Read!).. 12
Customer Support ... 13
Register! Register! Register!... 13

SpyWorks Concepts: Subclassing... 14
Introduction to Subclassing... 14

Windows Functions .. 15
How might you use subclassing?.. 16
Cautions on Using Subclassing... 18
Delayed Events - Posting an Event to Yourself.. 18
Using the Desaware Subclasser .. 18

Subclassing and spyware .. 18
Using the Desaware.SpyWorksDotNet Subclasser object.. 19
Using the dwsbc80.ocx control... 21

Subclassing Multiple Windows with the dwsbc80.ocx control 22
CrossProcess Issues .. 22
Process Spaces .. 23

SpyWorks Concepts: Windows Hooks... 23
Types of hooks.. 25
Should you use hooks or subclassing?.. 27

You are only interested in messages going to one or two windows 27
You are interested in monitoring messages to a large group of windows, such as
all of the controls on a form.. 27
You are interested in responding to particular messages regardless of which
application is currently active. .. 27
In general: ... 27

Using the Desaware Windows Hook .. 27
Keyboard hooks and spyware ... 27
Using the Desaware.SpyWorksDotNet KeyHook object for Keyboard Hooks 28

Setting up the KeyHook object for Keyboard Hooks ... 28
Discarding keystrokes... 30

Using the dwshk80.ocx control for Keyboard Hooks... 30

 - 5 -

Setting up the dwshk80.ocx control for Keyboard Hooks.................................... 31
Key Value Format... 31
Discarding keystrokes... 31

Using the Desaware.SpyWorksDotNet WinHook object for Windows Hooks........ 31
Setting up the WinHook object for Windows Hooks ... 32

Using the dwshk80.ocx control for Windows Hooks ... 33
Setting up the dwshk80.ocx control for Windows Hooks 34
Use of the nodef Parameter for the dwshk80.ocx control..................................... 34

WinHook - Use of the nodef event parameter .. 35
Hook Examples... 35

For further information on Hooks... 46
SpyWorks Concepts: dwshengine80.dll function library ... 47

dwshengine80.dll function reference .. 47
dwCopyData ... 47
dwGetAddressForObject... 47
dwXAllocateDataFrom... 48
dwXFreeDataFrom ... 48
dwXCopyAnsiStringFrom .. 48
dwXCopyUnicodeStringFrom .. 49
dwXCopyDataTo .. 49
dwXCopyDataFrom.. 49
dwXGetModuleFileName... 50
dwXGetEditLine ... 50
dwXSetForegroundWindow ... 50

Application Note: Using Cross Process Memory Access with SpyWorks................... 51
Using the EM_GETTEXTRANGE message.. 51
In Process Example... 53
Cross Process Example ... 55
Conclusion .. 60

SpyWorks Concepts: Exporting Functions... 61
What are Exported Functions?.. 61
How Dynamic Export Technology Works ... 62
The Exports Class ... 63
The ExportWizard... 64
Testing Exported Functions .. 65
Distributing your Exported Function files .. 65
Warning! Exporting Functions is Dangerous! .. 65

Migrating to the Desaware.shcomponent.dll .. 65
Introduction... 65
Fundamental Differences between the Desaware.shcomponent.dll component and the
COM based subclassing and hook components.. 66

The Desaware.shcomponent.dll component ... 66
Major Changes to the Subclassing Component .. 67
Major Changes to the Windows hook Component ... 68
Major Changes to the Keyboard hook Component... 68

Migrating the Subclass control from a .NET project.. 68

 - 6 -

Property changes:.. 70
Method changes: ... 72
Event changes: .. 72

Migrating the WinHook control from a .NET project – Windows hook migration 73
Property changes:.. 74
Event changes: .. 76

Migrating the WinHook control from a .NET project – KeyBoard hook migration 78
Property changes:.. 80
Event changes: .. 80

Desaware.shcomponent.dll Reference .. 81
Introduction... 81
Desaware.SpyWorks Enumerators ... 81
Desaware.SpyWorks Minor Classes... 84
Desaware.SpyWorks Main Classes .. 103
Controller Class .. 103

Properties .. 103
Methods... 104

KeyHook Class ... 105
Properties .. 105
Events.. 106

Subclasser Class.. 108
Properties .. 109
Events.. 109

WinHook Class ... 111
Use of the nodef event parameter ... 111
Properties .. 111
Events.. 114

dwsbc80.ocx Reference .. 121
Introduction... 121
Features:.. 121
Properties .. 122
Methods... 127
Events.. 128

dwshk80.ocx Reference .. 130
Introduction... 130
Keyboard hook features: ... 130
Keyboard hook Properties... 130
Keyboard hook Methods... 134
Keyboard hook Events.. 135
Windows hook features: ... 138
Windows hook Properties ... 138
Windows hook Events .. 147

.NET samples.. 152
Differences between C# and Visual Basic .NET sample projects 153

 - 7 -

Introduction
SpyWorks is probably the most unusual add-on product available for Visual Studio. As
such, it is very important that you review this introduction. It will help you to understand
both the features and the limitations of this product.

New for version 8.0
SpyWorks 8.0 is a major product upgrade designed to address three key issues:

1. Like any generic subclassing/hook tool, it can be used by unscrupulous
developers to create various types of spyware.

2. We wanted to substantially improve the handling of hooks under adverse
situations – such as dealing with system crashes.

3. This release provides initial support for .NET 2.0/3.0.
SpyWorks 8.0 represents a major fork in development of the package. As such, it can be
installed on the same system with version 7.1. It contains a completely new set of
components and a separate subclassing/hook engine.

Major changes are as follows:
• Anti-spyware technology. These changes are designed to prevent the SpyWorks

components from being incorrectly identified as Spyware. This takes two forms:
first, the new subclassing and hook controls have built in restrictions that make
them unable to intercept keystrokes from certain windows (such as text boxes
used to capture passwords) making the components less useful to spyware
authors. Second, the components have been renamed to not include the word
"spy" or "spyworks" because these were causing confusion among end-users.

• SpyWorks 8.0 has improved handling of Windows hooks, particularly with regard
to recovery when applications crash.

• SpyWorks 8.0 no longer supports the .Net 1.0 framework. Support for .NET 1.0
continues with version 7.1 which is still available and included with Universal
COM.

• SpyWorks 8.0 includes a .NET 2.0 subclassing/hook component that is also
compatible with .NET 3.0.

• SpyWorks 8.0 does not include primary interop assemblies or examples for using
the ActiveX controls with .NET. You can use them in .NET if you wish, however
you will need to use the interop assembly generated by Visual Studio.

• SpyWorks 8.0 does not install any components in the GAC. We feel it is now
better for .NET assemblies to be distributed in private directories. Note, however,
that the dwshengine80.dll component, like the dwspy36.dll component before it,
must be installed in the system directory. Simultaneously loading two instances of
these DLLs will cause errors to occur.

• SpyWorks 8.0 does not include a light edition of the NT Service toolkit. This
change was made because the full toolkit is included with the Universal COM
product.

 - 8 -

SpyWorks and Visual Studio .NET
The .NET framework represents a completely new “virtual machine” from the
perspective of both Visual Basic and C++ programmers. SpyWorks has historically been
a product dedicated to providing high level access to lower level system functionality.
With the arrival of .NET, some of the previous features of SpyWorks are now handled by
the .NET framework, while others are even more important. Our focus with SpyWorks
has been to ensure that key SpyWorks capabilities will be available for .NET in as timely
a manner as possible.

• This release of SpyWorks supports Microsoft Visual Studio .NET versions 1.1
and .NET 2.0/3.0.

Subclassing and Hooking
Support is provided using the native .NET Desaware.shcomponent.dll assembly file, and
the dwshk80.ocx and dwsbc80.ocx ActiveX controls.
We are confident that those of you who need the kinds of low level system access
provided by these components will be very pleased with their behavior under .NET.
We are also pleased to provide a number of sample .NET programs that demonstrate the
use of these components under .NET.
These samples are installed in the “VS NET Samples”, under the SpyWorks main folder.

Function Export
SpyWorks Professional includes a .NET function exporter that allows you to export
functions from your .NET assemblies. Other development platforms can call your .NET
export functions just as if they would call any standard Windows API functions. Refer to
the Exporting Functions section in this manual or the .NET Function Export samples for
more details.

Known issues with Visual Studio .NET and other general comments
• Upgrading a Visual Basic 6.0 project into .NET will not upgrade the Subclass or

WinHook controls correctly. You would need to change a couple of lines of code
in the upgraded file. Refer to the Migrating to .NET from Visual Basic 6.0 help
topic for more details.

• The Messages and Keys properties for the Subclass and WinHook controls are
also not preserved when upgrading to a Visual Basic .NET project from a Visual
Basic 6.0 project. For these properties, you should copy them from the VB 6
project and manually enter them in the .NET project. Also, the value for these
properties will appear as “0” in the Property Window when that property is not
selected. Once you select the property, you will see a “…” on the entry which you
may click to bring up the Property Page for the control.

• There is no automatic way to upgrade from the dwsbc36.ocx or dwshk36.ocx
components to dwsbc80.ocx and dwshk80.ocx. The easiest way to switch is to
drop a new control on the form and carefully copy the property values from one to
the other (using care to copy the keys and messages properties). It is not enough
to modify the project files because the binary storage format used for some of the
properties has changed.

 - 9 -

•

• Many of the dwGetAddress* functions will still work in .NET but we recommend
that you use the .NET framework’s Marshal namespace and platform-invoke
functionality instead. Refer to the function export samples for the Visual Basic 6.0
edition and Visual Studio .NET editions to see how to substitute the functions.

• For those moving to Visual Studio .NET from Visual Basic 6.0, we also
recommend Dan Appleman’s “Moving to VB.NET: Strategies, Concepts and
Code” book for the intermediate to advanced Visual Basic 6 developers
http://www.desaware.com/MovingToVBNETL2.htm

File Descriptions
The following files may be redistributed. When redistributing these files, they should be
installed in the system folder if they were installed in the system folder on your system,
otherwise they may be installed in a private folder.
Desaware.shcomponent.dll – Main SpyWorks Windows Hook and Subclassing
component for Visual Studio .NET. We recommend that you use this component when
developing in Visual Studio .NET. This file is installed to your SpyWorks folder’s bin
subfolder.
dwshk80.ocx – SpyWorks Windows Hook and KeyBoard Hook ActiveX control. You
can use this in Visual Studio .NET projects but we recommend using the
Desaware.shcomponent.dll file instead. Refer to the SpyWorksDotNetManual.pdf file’s
Migrating to the SpyWorksDotNet component section for information on migrating to the
new component. This file is installed in your System folder.
dwsbc80.ocx – SpyWorks Subclass ActiveX control. You can use this in Visual Studio
.NET projects but we recommend using the Desaware.shcomponent.dll file instead. Refer
to the SpyWorksDotNetManual.pdf file’s Migrating to the SpyWorksDotNet component
section for information on migrating to the new component. This file is installed in your
System folder.
dwshengine80.dll – SpyWorks Windows Hook and Subclass engine file. Required by
Desaware.shcomponent.dll, dwshk80.ocx, and dwsbc80.ocx. This file is installed in your
System folder.

The following files may NOT be redistributed.
ExportWizard11.exe – Function Export Wizard. This file is installed in your SpyWorks
“VS NET Apps\Export” folder.
dwNetExp11.xft – Function Export Wizard dependency file. This file is installed in your
SpyWorks “VS NET Apps\Export” folder.
Sw7help.dll – Function Export Wizard dependency file. This file is installed in your
System folder.
dwNetExportDiag.exe – Function Export diagnostics tool. This file is installed in your
SpyWorks “VS NET Apps\Export” folder.
dwsdes32.dll – SpyWorks Professional license file. This file is installed in your System
folder.

 - 10 -

SpyWorks includes sample file projects for Visual Studio 1.1 (2003) in Visual Basic
.NET and C# formats. The installation program will install the samples to the “VS NET
Samples” folder below the main SpyWorks folder.

Compatibility Issues
SpyWorks extensions use standard Windows techniques for subclassing windows. They
do not violate any of the rules or requirements of Windows programming and thus should
remain compatible with future versions of 32 bit Windows. SpyWorks include
components based on ActiveX technology and the .NET framework and are compatible
with the versions of Visual Basic and Visual Studio .NET that supports these
technologies.
The SpyWorks 8.0 components have been tested with Visual Studio .NET versions 1.1
under Windows 2000, Windows XP, and Windows 2003. The sample code and utilities
provided are distributed in Visual Basic .NET and C# formats.
We obviously cannot guarantee that this product will remain compatible with future
versions of Visual Studio, however any changes that would invalidate the use of the
SpyWorks components would likely break any program that uses Windows API
functions, and since API functions are used by many Visual Basic programmers and
Microsoft's own Visual Studio sample programs, the odds are good that applications that
use SpyWorks will continue to work for future versions of Visual Studio.

Migrating SpyWorks 7.1 Projects to SpyWorks 8.0
SpyWorks 8.0 includes replacement components as follows:

• dwspy36.dll is replaced by dwshengine80.dll
• desaware.spyworksdotnet11.dll is replaced by desaware.shcomponent11.dll
• There is no automatic way to upgrade from the dwsbc36.ocx or dwshk36.ocx

components to dwsbc80.ocx and dwshk80.ocx. The easiest way to switch is to
drop a new control on the form and carefully copy the property values from one to
the other (using care to copy the keys and messages properties). It is not enough
to modify the project files because the binary storage format used for some of the
properties has changed.

The desaware.shcomponent11.dll component is functionaly identical to
desaware.spyworksdotnet11.dll. All you need to do is change the reference in your
project from one to the other. You cannot reference both components at the same time.

Migrating Visual Basic 6.0 Projects to .NET
Migrating a Visual Basic 6.0 project to .NET is not recommended. But, nevertheless here
are some tips and known issues if you must migrate an existing Visual Basic 6 project
that contains SpyWorks to .NET. Please refer to the Migrating to the
Desaware.shcomponent.dll section for information on migrating .NET projects that uses
the SpyWorks ActiveX controls to the Desaware.shcomponent.dll .NET assembly
component.

 - 11 -

Learning .NET
One of the first steps is learning Visual Studio .NET. Not just the syntax changes or
learning the namespaces, but what is really important to learn and leveraging what you
already know. For all this, we recommend Dan Appleman’s “Moving to VB.NET:
Strategies, Concepts, and Code” book, ISBN 1-893115-976 published by Apress. If you
are trying to decide whether to stick with the Visual Basic language or go to C#, we
recommend Dan Appleman’s “Visual Basic.NET or C#? Which to Choose?” ebook
which can be purchased directly from Desaware, Inc., or on Amazon.com.

Migrating Visual Basic 6.0 projects
We recommend that you use the .NET upgrade wizard to upgrade your current VB 6
projects to a Visual Basic .NET project. You will still need to make some code
modifications after the upgrade wizard finishes porting your project, but at least it does a
pretty good job with most of your code migration.

Deciding on which Subclass and WinHook component to use in .NET
We strongly recommend you use the new native .NET Desaware.SpyWorksDotNet
namespace (Desaware.shcomponent11.dll DLL) that includes similar objects to replace
the Subclass and WinHook ActiveX controls. You can continue to use the ActiveX
controls in your .NET project. The initial investment in learning the new objects
contained in the Desaware.SpyWorksDotNet namespace will be a little higher, but their
similarities to the previous ActiveX controls and .NET objects will make their selection a
good investment for future .NET development. If you choose to use the new
Desaware.SpyWorksDotNet component, we recommend that you still migrate the
Subclass or Windows Hook controls first.

Migrating SpyWorks Subclass and WinHook ATL based ActiveX
controls

There are two approaches you can take:

1. First migrate your VB6 project to use the new dwsbc80.ocx and dwshk80.ocx
contro, then run the upgrade wizard.

2. Install SpyWorks 7.1 and migrate to the older dwsbc36.ocx and dwshk36.ocx
control. Refer to the SpyWorks 7.1 documentation for further details on this
migration.

The Messages and Keys properties will not be migrated by the upgrade wizard.

Using SpyWorks (Please Read!)
SpyWorks is designed for the intermediate to advanced Visual Basic or C# developer
who has a knowledge of how to use the Windows Application Programmer's Interface
(API). Also, a good understanding of Windows is required to really use this package
successfully.
 If you already know Windows well, you will find SpyWorks extremely easy to
use. Simply consider the task you wish to perform and how you would do it in C++, and

 - 12 -

then write it in Visual Basic or C#. Any code that you would normally write in a
Windows procedure in response to a Windows message, you can place in the SpyWorks
Subclass event. Any time you need to export a function from a DLL, look at the Exports
class functionality provided by SpyWorks. Where you would use Windows hooks, use
the SpyWorks Windows Hook control or WinHook object.
 If you have never programmed in Windows, you must learn about it in order to
use this package effectively. Visual Studio includes a reference for all available
Windows API functions and Windows messages.
 SpyWorks is a tool. Most add-on programs have a clearly defined set of
operations that they can perform. Their documentation can, and often does, include
extensive examples to show the capabilities of the product. A dozen books and manuals
could not begin to do this with SpyWorks, because it has no clearly defined set of
operations. It is a can-opener that enables you to tap the full power of Windows from
within Visual Studio. This manual includes a number of examples of how the extension
controls can be used, but we cannot even begin to guess at the potential of what can be
accomplished.

Customer Support
SpyWorks requires an understanding of the Windows API and Windows messages. We
at Desaware will gladly and enthusiastically fix any bugs in our software that pass
through our screening process. However, due to the nature of this product, we cannot
possibly resolve all issues that relate to use of the Windows API and possible
incompatibilities between the Windows API functions and Visual Studio.
What we can do is this: If you want to do something and think you have an approach, or
have a problem and would like some direction, feel free to drop us a line by phone or
email (contact information is located in the Register! and Technical Support sections of
this manual). If it appears to be a bug in our software, we will drop everything to fix it
and send you updated software. Otherwise, if it is something we can answer quickly,
we'll email an answer to you as quickly as possible. If it is something that is a more
extensive problem, we may propose to solve it on a consulting basis.
 If you have purchased this software directly from Desaware and have read this
introduction and you feel that SpyWorks is not for you, please feel free to return it for a
full refund (if you purchased it elsewhere you will need to contact your dealer for return
or refund information). Your satisfaction is important to us, and we are well aware that
this is a very unusual product and not appropriate for everyone.

Register! Register! Register!
We've found that the person who ends up using a software package is frequently not the
person who bought it. Therefore we really need your registration card. This will allow
us to provide you with technical support, send you information about upgrades, or send
you upgrades if you have a firewall preventing the auto update from automatically
retrieving update files. It will also allow us to send you information about SpyWorks
add-ons and other Desaware products.
 But we can't send this information to you without knowing who you are!
Desaware, Inc.
3510 Charter Park Drive, Suite 48

 - 13 -

San Jose, CA 95136
USA
Phone: 408/404-4760, Fax: 408/404-4780
Email: support@desaware.com
 We also invite you to subscribe to our email list server by sending a message to
listserve@desaware.com and including the word "Subscribe" in the subject line. We do
not share or sell your email address and we promise we won't send you email unless we
have something really important to share.

SpyWorks Concepts: Subclassing
Subclassing refers to the process of intercepting Windows messages that are normally
processed behind the scenes. More information on this technology will be discussed
shortly.
There are a number of approaches to subclassing. To handle the entire spectrum of
subclassing requirements, SpyWorks includes two different approaches to subclassing.
The dwsbc80.ocx subclass control is the ATL-based ActiveX control that was used in
previous versions of Visual Basic and supported in .NET. The Desaware.shcomponent.dll
component is a native .NET assembly that is in many ways more efficient than the
ActiveX control.
These two components will be discussed shortly in detail. First, let's take a look at the
process of subclassing itself.

Introduction to Subclassing
Under Microsoft Windows, every window has a special function called a window
function. This function has four parameters as follows:
ReturnValue WndProc(window handle, message number, wParam parameter, lParam
parameter)
In a 16 bit environment, the window handle, message number and wParam parameter are
16 bit integer values. All parameters are 32 bits under Win32. The ReturnValue is a 32
bit value. The term "sending a message" to a window means that the window function has
been called for that window. Each possible message has a message number, and a
message can have up to two parameters. The lParam parameter is frequently used to pass
a pointer to a larger data structure, so it is possible to include a great deal of information
in a message.
Windows defines many standard message numbers. Message numbers above &H400 are
called user-defined, which means that they depend on the type of window. It is also
possible to define a type of message called a "registered" message. A registered message
is identified by a name (or text string). Windows allocates a registered message number
for each unique registered message.
Messages are called from several sources. The windows environment sends messages
indicating that system events have occurred. For example: when a window needs to
receive information on mouse movement or if a key has been pressed when a window has
the focus, Windows will send the appropriate mouse or keyboard messages to the
window. Windows also sends messages to a window to instruct it to perform certain
tasks such as erasing its background or painting its client area.

 - 14 -

Windows programmers frequently send messages to windows to instruct them to perform
tasks as well. For example: adding and deleting text in an edit control or list box is
accomplished by sending messages to the control. You can send messages to windows
using the Windows API SendMessage and PostMessage functions.
When you use the SendMessage function to send a message, the windows function for
the window is called immediately. The result of the SendMessage function is set to the
value returned by the windows function. When you post a message to a window, the
message is added to a system message queue. The windows function for the window will
be called in due course when the message is processed by Windows. Obviously in this
case it is impossible for the windows function to return a value, since the application that
posted the message has long since past the point where it posted the message. In other
words, when you use SendMessage, your program does not continue to run until the
message has been completely processed. When you use PostMessage, your program
continues to run immediately - the message will be processed later.
There are dozens (if not hundreds) of possible messages. It would be terrible if each
window function had to implement all of the code necessary to process each message.
Fortunately, Windows provides default processing for most messages. Each window
function processes only those messages that it needs to.
Under traditional Windows development, you can subclass any window by forcing
Windows to call a function you define before it calls the true window function for that
window. You then have the opportunity in your function to process any messages
yourself. You can then either return directly to Windows, or allow the original window
function to execute.

Windows

Window
Function

Figure 1
Windows Functions

The SpyWorks subclassing components supports several types of subclassing. The most
common involves detection before default processing occurs (pre-default processing).
This means that the component gets message information before the window function for
the form or control does. This is shown in Figure 2.

 - 15 -

Windows

Subclasser

Window
Function

Figure 2
Subclassing before default processing

As you can see, the component gives you the option as to whether or not the original
(default) windows function should be called. In other words, you can, if you wish,
completely replace the default processing for any windows message for any window,
form or control.
This technique is especially powerful when you consider that you can subclass windows
in other applications than your own.
The SpyWorks subclassing components also allow you to specify that messages should
be intercepted after the default windows function has been called (post-default
processing) as shown in Figure 3.

Windows

Window
Function

Subclasser

Figure 3
Subclassing after default processing

You can also indicate that specific messages should be posted to the SpyWorks
subclassing components (posted or asynchronous message processing). This is common
when you need notification that a message was received, but do not need to perform any
processing immediately. This is the safest type of subclassing.

How might you use subclassing?
There are a number of common approaches to using subclassing.

 - 16 -

Detecting events:
In this case "events" refer to things that occur in the system that .NET does not allow you
to detect directly. For example: your application's main window will receive a message
whenever certain system setting changes occur. You can use subclassing to detect these
changes. For example: The WM_SETTINGCHANGE message indicates that a system
parameter was changed by some application using the SystemParametersInfo API
function. In most cases, you will use Posted detecting for this type of subclassing,
because you're only interested in detecting when the message arrives and have no need to
block or interfere with the normal processing of that message.
Another detection example is when you use API commands to add entries to your
application's system menu and wish to detect when the user selects your new menu
commands. Visual Basic does not itself allow you to intercept the WM_SYSCOMMAND
message. You might also use this to detect when menu commands are invoked in other
applications.
Overriding message behavior:
You may want to actually change the response of a window to a certain message. This is
an extremely powerful technique, as almost all of the behavior of a window is determined
by its response to windows messages. If you intercept a message, you can write in your
own behavior for the message and actually prevent the message from being forwarded to
the window. An example of this is when you wish to create your own context menu for a
control (the popup menu that appears when you right click on the control). You can
intercept the WM_CONTEXTMENU message before it arrives at the window, using pre-
default subclassing. If you block the message, the existing context menu will be disabled.
You can bring up your own popup menu during the message processing to effectively
create your own context menus.
You can also turn standard controls in some cases to owner draw controls, where you
keep the full capability of the standard control while completely overriding the
appearance of the control.
Monitoring messages and their results:
Sometimes you will want to intercept a message, allow default processing to occur, but
check the result returned by the default message processing before allowing the message
function to return. An example of this might be intercepting the WM_NCHITTEST. The
default message processing returns a code that indicates what type of window element the
mouse is over - for example: is it over the caption, client area, minimize box, etc. By
using Post-default detection, you can look at the result of this message, then override the
return value, tricking a window into thinking the mouse is over the window caption even
though it is actually over the client area. This provides a quick way to allow you to
reposition a window by dragging the client (instead of the caption).
As you can see, choosing the type of subclassing is a critical decision. You should always
use Posted (or Asynchronous) detection if possible. But since it does not allow you to
return values or modify the message or its parameters, there are many cases where you
will need to use pre-default or post-default processing.
The type of subclassing can be set using the Type property on the dwsbc.ocx control or
the SubclassingType property of the Desaware.SpyWorksDotNet Subclasser object.
Remember that you can subclass a window multiple times using the SpyWorks
components. It is not uncommon to use all three types of message detection on the same

 - 17 -

window simultaneously to accomplish different tasks. For efficiency sake, the SpyWorks
subclassers will actually subclass the window only once in these cases, automatically
dispatching events to the appropriate control or object events as needed.

Cautions on Using Subclassing
When you are subclassing a message, and you are using pre-default or post-default
processing (not posted or asynchronous), the component raises an event immediately -
while the underlying windows message is being processed. The underlying Windows
operating system may be expecting the application to both take and avoid certain actions
during message processing, depending on the message. Code that you execute at this time
poses the greatest risk to your application and the system. For this reason, you should
attempt to minimize the code that runs during the event. Also avoid complex tasks such
as loading or unloading forms or controls, launching other applications, and so on.
NEVER use the DoEvents function during a non-posted message. Also, you should
never use a Message Box during a non-posted message.
Use Diagnostics.Debug to obtain a debug trace instead of using message boxes or setting
a break point. These limitations do not apply when events are triggered by posted (or
asynchronous) messages.
Specific messages may have additional restrictions. Refer to your Windows API
reference for further information.

Delayed Events - Posting an Event to Yourself
Sometimes you'll find that there is a need to post a message to your own application. For
example: you may have broken up a long operation into small pieces and you want to
trigger an event that will occur during normal Windows processing without setting a
timer control. Another example is when you are subclassing a window using pre-default
or post-default message processing, and wish to perform an operation (such as closing the
application) that is not safe during the subclassed event itself.
The recommended approach to doing this is to use an asynchronous delegate.
If you are using the ActiveX control, the dwsbc80.ocx control uses the PostEvent
property to accomplish this. Simply assign the property a value, and a DelayedEvent
event will be raised as soon as the message is processed by the system.

Using the Desaware Subclasser

Subclassing and spyware
One of the problems that has occurred in the past with regards to the kind of cross-
process subclassing supported by SpyWorks is that while it has numerous legitimate uses,
it can also be used by spyware to capture information that end users might wish to keep
private (account passwords, for example). Unfortunately, some spyware vendors have
used our components in the past in this manner, and as a result some anti-spyware
programs have incorrectly blamed our components rather than the client application and
added our components to their spyware lists.
SpyWorks 8.0 places some functional limitations in the package that should have no
impact on legitimate users, but make the components useless to spyware developers.

 - 18 -

With regards to subclassing, the subclassing engine checks all intercepted keyboard and
character (WM_CHAR) messages to see if the message is destined to the client
application (the one that placed the subclass). If so, it is always allowed through. Thus
there are no limitations to subclassing your own application.
If the message is from another process, a filter is applied:

• If the destination of the message is a text box with the password style set, the
message is not forwarded to the subclasser.

• If the destination is a browser window, the message is not forwarded to the
subclasser. The engine applies this filter to the Internet Explorer 6.x, Netscape,
Mozilla, Opera and Firefox browsers.

Non character keystroke messages are generally allowed, as are control and alt character
combinations.

Using the Desaware.SpyWorksDotNet Subclasser object
Subclassing using the native .NET Desaware.SpyWorksDotNet Subclasser object is a
very simple process.

 Add the Desaware.shcomponent.dll .NET component reference to your .NET
project. The Desaware.shcomponent.dll file is installed in your SpyWorks bin
folder.

 Define the Subclasser object and create a new instance of the object.
[VB]
Imports Desaware.SpyWorks

Friend SubClass1 As Subclasser
SubClass1 = New Subclasser()

[C#]
using Desaware.SpyWorks;

internal Subclasser SubClass1;
SubClass1 = new Subclasser();

 Specify the messages to detect. The Subclasser object only detects messages that
you specify. This helps keep the overhead in subclassing to an absolute
minimum. Use the Messages property to specify the messages to detect. If you
do not specify any messages, the object will detect all messages going to the
subclassed window.

[VB]
Imports Desaware.SpyWorks

SubClass1.Messages = New WindowsMessageList()
SubClass1.Messages.AddMessage(StandardMessages.WM_ACTIVATE)

[C#]
using Desaware.SpyWorks;

SubClass1.Messages = new WindowsMessageList();
SubClass1.Messages.AddMessage(StandardMessages.WM_ACTIVATE);

 - 19 -

• Choose the type of subclassing. The Type property is used to specify whether you
want messages detected before the default window function, after the default
window function, or asynchronously (posted).

[VB]

SubClass1.SubclassingType = SubclassingTypes.PreDefault

[C#]

SubClass1.SubclassingType = SubclassingTypes.PreDefault;

• Create an event handler for the Subclasser object’s OnWndMessage event. (You
can also declare the subclass object WithEvents in VB .NET).

[VB]

AddHandler SubClass1.OnWndMessage, AddressOf SubClass1_OnWndMessage

Private Sub SubClass1_OnWndMessage(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.WndMessageEventArgs)

End Sub

[C#]

SubClass1.OnWndMessage += new
WndMessageEventHandler(SubClass1_OnWndMessage);

private void SubClass1_OnWndMessage(object sender,
Desaware.SpyWorks.WndMessageEventArgs e)
{
}

• For cleanup purposes, the Subclasser object’s OnWndMessage event handler
should also be removed when you are done using the object.

[VB]

RemoveHandler SubClass1.OnWndMessage, AddressOf SubClass1_OnWndMessage

[C#]

SubClass1.OnWndMessage -= new
WndMessageEventHandler(SubClass1_OnWndMessage);

• Set the HwndParam property to the window, control or form to subclass.
Subclassing starts immediately after a window is specified so this should be the
last step performed. To end subclassing, clear the HwndParam property.

[VB]

SubClass1.HwndParam = hwnd

[C#]

SubClass1.HwndParam = hwnd;

 - 20 -

Once you have performed these steps, the Subclasser object will receive messages based
on the property settings and will trigger the OnWndMessage event.
The windows message information is exposed by the OnWndMessage event’s
WndMessageEventArgs parameter. The window handle is in the e.hwnd parameter. The
message number can be found in the e.msg parameter. e.wp and e.lp are the standard
windows wParam and lParam parameters, and their values depend on the individual
message. If you are doing asynchronous (or posted) message detection, these are the only
parameters that you will use.
If you are using pre-default subclassing, you can actually change the values of these
parameters and change the message before it is sent to the default message function. If
you set the e.nodef parameter to non-zero, you can block the default message processing
from taking place and specify your own return value by setting the e.retval parameter.
If you are using post-default processing, the e.retval parameter will already be set to the
return value provided by the default window message processing.
The e.retval and e.nodef parameters have no effect when the subclassing type is
asynchronous.

Using the dwsbc80.ocx control
Subclassing using the dwsbc80.ocx control is a very simple process.

 Add the dwsbc80.ocx control to your Windows form. If the dwsbc80.ocx control
is not already in your Toolbox you can right-click on the Toolbox and select the
Customize Toolbox… menu command. In the COM Components tab of the
Customize Toolbox form, select the Desaware dwsbc80 v8 Subclassing Control
checkbox then select the OK button to add the dwsbc80 control to your Toolbox.

 Select the messages to detect. The dwsbc80.ocx control only detects messages
that you specify. This helps keep the overhead in subclassing to an absolute
minimum. Use the Messages and RegMessage properties to specify the messages
to detect. The RegMessage properties allow you to specify a registered message
by the name of the message instead of the number. These properties can be used
at design time or at runtime. If you do not specify any messages, the control will
detect all messages going to the subclassed window.

• Choose the type of subclassing. The Type property is used to specify whether you
want messages detected before the default window function, after the default
window function, or simply posted to the dwsbc80.ocx control

• Choose the window, control or form to subclass. You can use the CtlParam or
HwndParam properties to specify which window, form or control to subclass.
You can also add windows or controls to a built-in subclassing array which allows
a single dwsbc80.ocx control to subclass many windows or controls. Subclassing
starts immediately after a window is specified so this should be the last step
performed.

Once you have performed these steps, the dwsbc80.ocx control will receive messages
based on the property settings. Messages sent from Windows will trigger the
WndMessage event or the WndMessageX event .
For example: the WndMessage event appears as follows:
[VB]

 - 21 -

Private Sub SubClass1_WndMessage(ByVal sender As Object, ByVal e As
AxDWSHK80Lib.AxSubclass._DDwsbcEvents_WndMessageEvent) Handles
SubClass1.WndMessage
[C#]
private void SubClass1_WndMessage(object sender,
AxDWSHK80Lib.AxSubclass._DDwsbcEvents_WndMessageEvent e)

The window handle is in the e.hwnd parameter. The message number can be found in the
e.msg parameter. e.wp and e.lp are the standard windows wParam and lParam
parameters, and their values depend on the individual message. If you are doing a posted
(or asynchronous) message detection, these are the only parameters that you will use.
If you are using pre-default subclassing, you can actually change the values of these
parameters and change the message before it is sent to the default message function. If
you set the e.nodef parameter to non-zero, you can block the default message processing
from taking place and specify your own return value by setting the e.retval parameter.
If you are using post-default processing, the e.retval parameter will already be set to the
return value provided by the default window message processing.
The e.retval and e.nodef parameters have no effect when the subclassing type is Posted.

Subclassing Multiple Windows with the dwsbc80.ocx control
The dwsbc80.ocx control has the ability to subclass multiple windows or controls with a
single dwsbc80.ocx control. In order to ensure compatibility with the previous versions of
the control, this capability was added by incorporating a subclassing array into the
dwsbc80.ocx controls. This is an array that can be loaded at runtime. It works completely
independently from the standard HwndParam and CtlParam properties. You can use
either or both techniques for specifying windows to subclass. The biggest advantage to
the CtlParam property is that it is possible to set the property at design time.
The AddHwnd property is used at runtime to add windows to the subclassing array. The
RemoveHwnd property can be used to remove windows from the subclassing array. The
HwndArray and HookCount properties can be used to determine which windows are
currently being subclassed.
It is important to recognize that the non-subclassing array properties and the subclassing
arrays implement two completely different subclassing subsystems. It is very possible for
the same window to be specified using both techniques and thus to be subclassed twice
(in which case each message will be triggered twice).
The other dwsbc80.ocx properties that specify messages, detection type, etc. apply to all
windows or controls being subclassed by the control.

CrossProcess Issues
When you subclass a different application, every time a message arrives in the
application that you want to see, the other application must be suspended and control
passed to your application. (Note: message filtering takes place in the context of the
subclassed application, which limits time consuming task switches only to those
messages for which you specifically ask for.)
What happens if a message is detected in another application but your application is tied
up on a long operation such as a long loop? The other application becomes suspended
and must wait until your application is ready to process the message. If your application

 - 22 -

is blocked or even crashed, the other application might become permanently blocked.
This can be even more serious with the SpyWorks Subclassing components, where all of
the messages in the system can become blocked while waiting for a single application.
For this reason, the SpyWorks Subclassing and Windows Hook components include a
CrossTaskTimeout property which allows you to limit the amount of time that the other
application will wait until your application is ready to process the message.
Note that the Desaware.shcomponent.dll native component is more resistant to this kind
of deadlock because it can take advantage of the free threaded nature of .NET, especially
when using asynchronous message detection.

Process Spaces
Under Win32, each process has its own memory space. Let's say you intercept a message
going to another window which has as one of its parameters a memory address. This
memory address will be meaningless to your application. In order to facilitate data
transfer between processes, SpyWorks includes a number of cross-process memory
function in the dwshengine80.dll library (more on this later). However, the SpyWorks
Subclassing components also include the GetAnsiString and GetUnicodeString methods
to allow you to easily retrieve text information from other process spaces.

SpyWorks Concepts: Windows Hooks
Subclassing is based on the idea of intercepting message by changing the function that is
associated with a window, forcing messages going to a window to run your code instead
of the function originally assigned to a window. You then have the option of calling the
original window function if you wish.
Subclassing suffers from two main limitations:

1. You must explicitly subclass each window for which you want to receive
messages.

2. Subclassing always intercepts messages right before the window function is about
to be run.

Windows provides another mechanism for intercepting messages called Windows hooks.
There are a number of different types of Windows hooks available. To see how they
work, consider for a moment how messages are generated. This is illustrated in figure 4.
Because messages are generated in many different ways, let's start from the end when a
message arrives at a window.
A message arrives at a window when the windows "window function" is called.
Subclassing is the process of replacing one window function with another.
There are two ways for a window function to be called. One is through the SendMessage
API function. This function causes a window function to be called immediately. The
SendMessage API function does not generally return until the window function has
completed its operation, and the SendMessage API returns the same value returned by the
window function.
A window function is also called by the system when an application calls the GetMessage
API function. This is done behind the scenes in Visual Basic, so most VB programmers
are not aware that every application is constantly running an infinite loop called a
"dispatch loop" which does not exit until the application terminates. This loop calls the
GetMessage API to see if any messages are available in the application's message queue.

 - 23 -

If a message is available, the system determines the destination window and calls the
window function with the message.

Seperate
Thread

Message
Queues

Window
Function

Application
Calls
GetMessage

SendMessage
to Window

PostMessage
to Window

Keyboard
Messages

WH_MOUSE

WH_KEYBOARD

WH_CALLWNDPROC

WH_GETMESSAGE

Other
Messages.

System
Message
Queue

Mouse
Messages

 - 24 -

Figure 4 - Message flow and Hooks

The SendMessage and GetMessage message paths are both shown at the bottom of figure
4. The figure illustrates the first two of the most commonly used hooks. The
WH_GETMESSAGE hook traps messages whenever an application calls the
GetMessage API function. This provides a way for you to examine messages that have
been posted to an application's message queue before they are processed by the
application.
The WH_CALLWNDPROC hook traps every message that goes to a window function,
regardless of whether it comes in due to a call to the GetMessage API or a SendMessage
call.

But why would you want to use a hook instead of subclassing? Is being able to tell the
difference between sent messages and dispatched messages a big enough difference?
Certainly not - you will rarely care where a message comes from.
No, the trick is this:
Both the WH_CALLWNDPROC and WH_GETMESSAGE hooks allow you to intercept
messages going to every window for a particular thread with one operation. In fact, they
can allow you to intercept messages going to every window in the system just as easily.
This is part of the power of hooks - their ability to tap into the flow of messages before
they are dispatched to individual windows.

Continuing with figure 4. As you proceed up the page, you'll see that each system thread
has its own message queue which is fed from a system queue. The system queue receives
messages from a number of different sources. The most common of these are keyboard
messages, mouse messages and miscellaneous system messages.
The WH_KEYBOARD and WH_MOUSE hooks allow you to trap keystrokes and mouse
events before they are actually placed into the system queue. Here too, you have the
ability to trap these messages on a thread or system basis with one operation.

SpyWorks provides two components for implementing system hooks. The dwshk80.ocx
control is the ATL-based ActiveX control that was used in previous versions of Visual
Basic and supported in .NET. The Desaware.shcomponent.dll component is a native
.NET assembly that is in many ways more efficient than the ActiveX control.

Types of hooks
The SpyWorks Windows hooks components support most current types of Windows
hooks. Of these, the most likely ones that you will use are the WH_GETMESSAGE
(GetMessage), WH_MOUSE (Mouse), WH_KEYBOARD (Keyboard) and
WH_CALLWNDPROC (CallWndProc) hooks. Refer to the online component reference
and the HookType properties of the dwshk80.ocx control or WinHook object for details
on how to use these hook types. Note that the dwshk80.ocx control and WinHook object
raise different events for different types of hooks. This is also covered in the online
documentation for the HookType property.

CallWndProc Implements a WH_CALLWNDPROC hook. This hook is

 - 25 -

triggered any time a message is sent to a window function. This
hook type detects every message received by a window. Even
with the advanced filtering used by SpyWorks, use of this hook
can impact system performance and should be avoided if
possible.

CallWndProcRet Implements a WH_CALLWNDPROCRET hook. This hook is
triggered any time a windows function returns from a message.
This hook type detects every message received by a window.
Even with the advanced filtering used by SpyWorks, use of this
hook can impact system performance and should be avoided if
possible.

CBT Implements a WH_CBT hook. This hook is used to implement
computer based training applications, providing information on
a variety of windows events.

ForegroundIdle Implements a WH_FOREGROUNDIDLE hook. This hook is
used to detect when the foreground thread is about to become
idle.

GetMessage Implements a WH_GETMESSAGE hook. This hook is
triggered any time an API function called GetMessage (or
PeekMessage) is called during the main message handling loop
of a Windows application. It does not detect every message
received by a window function, but it is very efficient.

JournalPlayback Implements a WH_JOURNALPLAYBACK hook. This hook is
used to simulate keyboard and mouse events to the system,
typically after being recorded using the JournalRecord hook.

JournalRecord Implements a WH_JOURNALRECORD hook. This hook is
used to record keyboard and mouse events on the system,
typically to implement a macro recorder.

Keyboard Implements a WH_KEYBOARD hook. This hook is triggered
by keyboard events.

KeyboardLL Implements a WH_KEYBOARD_LL hook. This hook is
triggered by keyboard events.

MessageFilter Implements a WH_MSGFILTER hook. This hook is triggered
any time a non-system message is sent to a dialog box, message
box or menu.

Mouse Implements a WH_MOUSE hook. This hook is triggered by
mouse events.

MouseLL Implements a WH_MOUSE_LL hook. This hook is triggered
by mouse events.

Shell Implements a WH_SHELL hook. This hook is triggered when
the shell application is about to be activated and when a top-
level window is created or destroyed.

SysMessageFilter Implements a WH_SYSMSGFILTER hook. This hook is
triggered any time a system message is sent to a dialog box,
message box or menu.

 - 26 -

Should you use hooks or subclassing?
We are often asked whether it is more appropriate to use hooks or subclassing in a given
application. While it is not possible for us to make specific recommendations that are
right for every application, here are a few general rules that should prove helpful.
You are only interested in messages going to one or two windows
In most cases you will use subclassing in this situation. The one exception is where
messages are being blocked by other parts of the system before they get to the window.
You are interested in monitoring messages to a large group of windows,
such as all of the controls on a form.
A hook may be most useful in this case, as it eliminates the need to enumerate and
subclass individual windows.
You are interested in responding to particular messages regardless of
which application is currently active.
A common application for this is implementation of system hotkeys, or monitoring which
application has the focus. In this case a Windows hook is usually the best solution. Try to
avoid using the WH_CALLWNDPROC hook, however. It is the most invasive of the
hooks and can impact system performance and stability (especially if you have any bugs
in your hook code).
In general:

• Try to use subclassing before hooks.
• Try to use thread specific hooks before application wide hooks.
• Try to use application wide hooks before system hooks.
• Use WH_GETMESSAGE hooks before WH_KEYBOARD hooks and

WH_MOUSE hooks.
• Use any type of hook before WH_CALLWNDPROC hooks.

Using the Desaware Windows Hook

Keyboard hooks and spyware
One of the problems that has occurred in the past with regards to keyboard hooks is that
while they have numerous legitimate uses, they can also be used by spyware to capture
information that end users might wish to keep private (account passwords, for example).
Unfortunately, some spyware vendors have used our components in the past in this
manner, and as a result some anti-spyware programs have incorrectly blamed our
components rather than the client application and added our components to their spyware
lists.
SpyWorks 8.0 places some functional limitations in the package that should have no
impact on legitimate users, but make the components useless to spyware developers.
With regards to hooks, the hook engine checks all keyboard and message hooks to see if
the detected event is a keystroke or character message. If the keystroke or character is
destined to the client application (the one that placed the hook) it is always allowed
through. Thus there are no limitations to hooking or subclassing your own application.
If the keystroke or message is from another process, a filter is applied:

 - 27 -

• If the destination is a text box with the password style set, the keystroke or
message is not forwarded to the hook.

• If the destination is a browser window, the keystroke or message is not forwarded
to the hook. The engine applies this filter to the Internet Explorer 6.x, Netscape,
Mozilla, Opera and Firefox browsers.

Non character keystrokes are generally allowed, as are control and alt character
combinations.

Using the Desaware.SpyWorksDotNet KeyHook object for Keyboard
Hooks
The KeyHook object derives from the WinHook object and is used for keyboard hooks.
The KeyHook object is designed to hook into the Windows keyboard processing system
in order to detect keyboard events before they are processed by an application.
Several types of keyboard hooks may be placed, depending on the setting of the
HookType and Monitor properties. One type intercepts only keystrokes sent to the
process that contains this object. Another type intercepts all keystrokes in the system. A
third type intercepts keystrokes from a specified process, while a fourth type intercepts
keystrokes from a specified thread. Refer to the HookType property for more details.
Keyboard hooking can be enabled or disabled by setting the Enabled property.
Keystrokes may be processed immediately by the application, or posted for later use.
The KeyFilterList property can be used to set up a filter for keystroke processing. If no
keys are specified, then all keys are detected. Otherwise, only keys that are specified will
be detected. This significantly reduces the overhead in situations where you are searching
only for a few specific key combinations.
The KeyHook object uses a Windows keyboard hook to detect keyboard events. As such,
it detects the keys before they are seen by Visual Studio or any other application. This
means that you can detect unusual key combinations such as enter, tab, alt-tab and
control-break as well as other characters. It also means that if you are not careful, it is
possible to completely lock out the keyboard.
Of course, if you wish to lock out the keyboard, go right ahead and do so.
Setting up the KeyHook object for Keyboard Hooks
Receiving keyboard events using the KeyHook object is a very simple process.
1. Add the Desaware.shcomponent.dll reference to your project.
Select the Desaware.shcomponent.dll component from the SpyWorks bin folder.
2. Declare a KeyHook object in the appropriate form, class or module.
Note that you can declare the KeyHook object “WithEvents” in Visual Basic.
[VB]
Imports Desaware.SpyWorks
Friend KeyHook1 As KeyHook
[C#]
using Desaware.SpyWorks;
internal KeyHook KeyHook1;

3. Create a new instance of the KeyHook object.
[VB]
KeyHook1 = New KeyHook()

 - 28 -

[C#]
KeyHook1 = new KeyHook();

4. Specify the scope of the hook.
The Monitor property specifies the scope of the keyboard hook.
[VB]
KeyHook1.Monitor = HookMonitor.EntireSystem
[C#]
KeyHook1.Monitor = HookMonitor.EntireSystem;

5. Select the type of hook
The HookType property selects the type of keyboard hook you want to use.
[VB]
KeyHook1.HookType = HookTypes.Keyboard
[C#]
KeyHook1.HookType = HookTypes.Keyboard;

6. Select the keys to intercept
The default is for the KeyHook object to detect all keystrokes. However, if you are
searching only for a specific set of key combinations, you can use the KeyFilterList
property to select the keystrokes to intercept. Using a keys filter in this manner will
improve performance. The following sample detects the “Ctrl+a” key.
[VB]
KeyHook1.KeyFilterList = New KeyList()
KeyHook1.KeyFilterList.AddKey(LetterKeys.LTR_A, KeyFlags.Ctrl)
[C#]
KeyHook1.KeyFilterList = new KeyList();
KeyHook1.KeyFilterList.AddKey(LetterKeys.LTR_A, KeyFlags.Ctrl);

7. Add event handler
You can add an event handler to the KeyHook’s OnKeyDown or OnKeyUp events
depending on when you would like to detect the key.
[VB]
AddHandler KeyHook1.OnKeyDown, AddressOf KeyHook1_OnKeyDown
[C#]
KeyHook1.OnKeyDown += new
Desaware.SpyWorks.KeyDownHookEventHandler(KeyHook1_OnKeyDown);

8. Add event code
Add your code to the OnKeyDown or OnKeyUp events.
[VB]
Private Sub KeyHook1_OnKeyDown(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.KeyboardHookEventArgs)
 ' Add code here
End Sub
[C#]
private void KeyHook1_OnKeyDown(object sender,
Desaware.SpyWorks.KeyboardHookEventArgs e)
{
 // Add code here
}

9. Start receiving keys

 - 29 -

Set the KeyHook object’s Enabled property to true to start receiving keys.
[VB]
KeyHook1.Enabled = True
[C#]
KeyHook1.Enabled = true;

10. Do clean up when done using the KeyHook
Set the KeyHook object’s Enabled property to false when done. You should also remove
the handler before destroying the KeyHook object.
[VB]
KeyHook1.Enabled = False

RemoveHandler KeyHook1.OnKeyDown, AddressOf KeyHook1_OnKeyDown

[C#]
KeyHook1.Enabled = false;

KeyHook1.OnKeyDown -= new
Desaware.SpyWorks.KeyDownHookEventHandler(KeyHook1_OnKeyDown);

The KeyboardHookEventArgs object from the OnKeyDown and OnKeyUp events is
described in details in the reference section. It includes all the information you need to
process the keystroke that was detected.
Discarding keystrokes
The KeyboardHookEventArgs object has two members that are significant when it comes
to discarding keystrokes. Setting the discard member to true prevents subsequent hooks
from seeing the keystroke. But you should also set the keycode member to zero to make
sure that the original keycode is not forwarded to the intended receiver.
Naturally, the AsyncNotification property must be false to detect the keystrokes when
hooked. You cannot remove keystrokes if the AsyncNotification property is set.

Using the dwshk80.ocx control for Keyboard Hooks
The dwshk80.ocx control contains two separate subsystems, one for keyboard hooks, the
other subsystem for all other types of hooks. You should only enable one of these
subsystem per control.
The dwshk80.ocx control is designed to hook into the Windows keyboard processing
system in order to detect keyboard events before they are processed by an application.
Several types of keyboard hooks may be placed, depending on the setting of the
KeyboardHook property. One type intercepts only keystrokes sent to the process which
contains this custom control. Another type intercepts all keystrokes in the system. A
third type intercepts keystrokes from a specified process, while a fourth type intercepts
keystrokes from a specified thread. Keyboard hooking can also be disabled by the proper
setting of the KeyboardHook property.
Keystrokes may be processed immediately by the application, or posted for later use.
The Keys property can be used to set up a filter for keystroke processing. Only keys that
are specified will be detected. This significantly reduces the overhead in situations where
you are searching only for a few specific key combinations.
The dwshk80.ocx control uses a Windows keyboard hook to detect keyboard events. As
such, it detects the keys before they are seen by Visual Studio or any other application.

 - 30 -

This means that you can detect unusual key combinations such as enter, tab and control-
break as well as other characters. It also means that if you are not careful, it is possible to
completely lock out the keyboard.
Of course, if you wish to lock out the keyboard, go right ahead and do so.
Setting up the dwshk80.ocx control for Keyboard Hooks
Receiving keyboard events using the dwshk80.ocx control is a very simple process.
1. Choose the scope of the hook
The KeyboardHook property specifies the scope of the keyboard hook.
2. Choose the type of notification
The KeyboardNotify property determines when the KbdHook ,KeyDownHook, and
KeyUpHook events will be triggered for a keyboard event. You can trigger key events
when the keyboard activity takes place or have it posted for later use.
3. Select the keys to intercept
The default is for the dwshk80.ocx control to detect all keystrokes. However, if you are
searching only for a specific set of key combinations, you can use the Keys property to
select the keystrokes to intercept. Using a keys filter in this manner will improve
performance.
4. Add event code
Add your code to the KeyDownHook , KeyUpHook , or KbdHook events. Use the
KeyboardEvent property to determine whether you will use the KeyDownHook and
KeyUpHook combination, or the KbdHook event.
Key Value Format
A key value in the dwshk80.ocx control is represented by the keycode field. The shiftstate
field determines the requested state of the SHIFT, CONTROL and ALT keys where bit 0
corresponds to the state of the SHIFT key, bit 1 corresponds to the state of the CTRL key
and bit 2 corresponds to the state of the ALT key.
Discarding keystrokes
The keyboard events have two parameters that are significant when it comes to
discarding keystrokes. Setting the discard field prevents subsequent hooks from seeing
the keystroke. But you should also set the keycode field to zero to make sure that the
original keycode is not forwarded to the application.
Naturally, the KeyboardNotify property must be set to detect the keystrokes when
hooked. You cannot remove keystrokes if the notification is posted.

Using the Desaware.SpyWorksDotNet WinHook object for Windows
Hooks
The WinHook object provides limited ability to modify or to discard messages. The
limitations depend on the types of hook, not the object itself. Unlike subclassing with the
Subclasser object, you cannot return a result to Windows.
Because Windows hooks do not require a window handle, it is possible for the WinHook
object to detect the WM_NCCREATE and WM_CREATE messages that occur when a
window is created. This makes it possible to change the style of a newly loaded Windows
form or control during the creation process.

 - 31 -

Setting up the WinHook object for Windows Hooks
Receiving windows events using the WinHook object is a very simple process.
1. Add the Desaware.shcomponent.dll reference to your project. (This may be
Desaware.shcomponent11.dll or Desaware.shcomponent20.dll depending on
framework version)
Select the Desaware.shcomponent.dll component from the SpyWorks bin folder.
2. Declare a WinHook object in the appropriate form, class or module.
Note that you can declare the WinHook object “WithEvents” in Visual Basic.
[VB]
Imports Desaware.SpyWorks
Friend WinHook1 As WinHook
[C#]
using Desaware.SpyWorks;
internal WinHook WinHook1;

3. Create a new instance of the WinHook object.
[VB]
WinHook1 = New WinHook()
[C#]
WinHook1 = new WinHook();

4. Specify the scope of the hook.
The Monitor property specifies the scope of the windows hook.
[VB]
WinHook1.Monitor = HookMonitor.EntireSystem
[C#]
WinHook1.Monitor = HookMonitor.EntireSystem;

5. Select the type of hook
The HookType property selects the type of windows hook you want to use.
[VB]
WinHook1.HookType = HookTypes.Mouse
[C#]
WinHook1.HookType = HookTypes.Mouse;

6. Select the messages to detect
The default is for the WinHook object to detect all windows messages. However, if you
are searching only for a specific set of windows messages, you can use the
WindowsMessageList property to select the windows messages to detect. Using a
message filter in this manner will improve performance. The following sample detects
the mouse movement and left mouse button click over the non-client area of a window.
[VB]
WinHook1.Messages = New WindowsMessageList()
WinHook1.Messages.AddMessage(NonClientMessages.WM_NCMOUSEMOVE)
WinHook1.Messages.AddMessage(NonClientMessages.WM_NCLBUTTONDOWN)
[C#]
WinHook1.Messages = new WindowsMessageList();
WinHook1.Messages.AddMessage(NonClientMessages.WM_NCMOUSEMOVE);
WinHook1.Messages.AddMessage(NonClientMessages.WM_NCLBUTTONDOWN);

7. Add event handler

 - 32 -

You can add an event handler to the WinHook object’s OnCBTHook,
OnForegroundIdleHook, OnJournalPlaybackHook, OnJournalRecordHook,
OnMessageHook, OnMouseHook, or OnShellHook events depending on the HookType
you select.
[VB]
AddHandler WinHook1.OnMouseHook, AddressOf WinHook1_OnMouseHook
[C#]
WinHook1.OnMouseHook += new
Desaware.SpyWorks.MouseHookEventHandler(WinHook1_OnMouseHook);

8. Add event code
Add your code to the WinHook object’s event. Each event’s e parameter is of a different
object containing information for that particular hook type. Refer to the reference section
for more details on each event.
[VB]
Private Sub WinHook1_OnMouseHook(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.MouseHookEventArgs)
 ' Add code here
End Sub
[C#]
private void WinHook1_OnMouseHook(object sender,
Desaware.SpyWorks.MouseHookEventArgs e)
{
 // Add code here
}

9. Start detecting messages
Set the WinHook object’s Enabled property to true to start receiving messages.
[VB]
WinHook1.Enabled = True
[C#]
WinHook1.Enabled = true;

10. Do clean up when done using the WinHook
Set the WinHook object’s Enabled property to false when done. You should also remove
the handler before destroying the WinHook object.
[VB]
WinHook1.Enabled = False

RemoveHandler WinHook1.OnMouseHook, AddressOf WinHook1_OnMouseHook

[C#]
WinHook1.Enabled = false;

WinHook1.OnMouseHook -= new
Desaware.SpyWorks.MouseHookEventHandler(WinHook1_OnMouseHook);

Using the dwshk80.ocx control for Windows Hooks
The dwshk80.ocx control includes a separate subsystem for handling non-keyboard
hooks.

 - 33 -

The dwshk80.ocx control provides limited ability to modify or to discard messages. The
limitations depend on the types of hook, not the control itself. Unlike subclassing with the
dwsbc80.ocx control, you cannot return a result to Windows.
Because Windows hooks do not require a window handle, it is possible for the
dwshk80.ocx control to detect the WM_NCCREATE and WM_CREATE messages that
occur when a window is created. This makes it possible for the first time to change the
style of a newly loaded Windows form or control during the creation process.
Setting up the dwshk80.ocx control for Windows Hooks
Receiving windows hooks using the dwshk80.ocx control is a very simple process.
1. Select the type of hook
Use the HookType property to select the type of hook you wish to use.
2. Select the messages to hook
Use the Messages property to bring up the messages dialog box to select messages to
intercept. You can also use the MessageArray , Messages , and MessageCount properties
to dynamically set messages to detect at runtime. These properties work identically to the
properties of the same name in the dwsbc80.ocx control.
3. Set the scope of the hook
Use the Monitor property to specify the scope of the hook. You can hook a single thread,
any one form (with or without it's child windows), a single process, or the entire system.
4. Turn on the hook.
Use the HookEnabled property to turn on the windows hooks. Note that this property has
no effect on the keyboard hook subsystem of the dwshk80.ocx control.
5. Add Your Event Code
Remember that each type of hook uses a specific event. If you add your code to the
wrong event, your code will not execute even if everything else is set up correctly. Look
at the online reference for the HookType property to see which events are associated with
each hook type.
Use of the nodef Parameter for the dwshk80.ocx control
The dwshk80.ocx message events include a nodef field. This field differs somewhat from
the way it works with the dwsbc80.ocx control, and it is important to understand these
differences.
With dwsbc80.ocx, nodef is an utterly reliable way to discard a message. The default
window routine will not be called.
The dwshk80.ocx control uses a different technology to intercept windows messages.
Setting the nodef field typically prevents all further hooks from being called for the
specified message - however, it is not always the case that your dwshk80.ocx control is
the first control in the chain. This means that other hooks or tools may have processed the
message first, and that some internal Windows operations may have already taken place.
In addition, preventing further hooks does not always seem to prevent the message from
being fired.
For these reasons, setting nodef to True for the dwshk80.ocx control is not recommended
and should only be done after careful experimentation.
Depending on the type of hook, you may be able to discard a message by setting the
nodef property to True and setting the message number to zero.
However, there is a safe way to discard messages when you need to do so by using
dwshk80.ocx in conjunction with dwsbc80.ocx. The dwshk80.ocx control always

 - 34 -

receives messages before they are sent to the actual window function. This means that
during processing of the message, it is possible to subclass the window using the
dwsbc80.ocx control. You can then discard the message via the dwsbc80.ocx control by
setting its nodef field to True during the message event processing.

WinHook - Use of the nodef event parameter
Most WinHook event argument classes include a nodef field that can be set during event
processing. This event provides direction to the dwshengine80.dll engine to not call the
CallNextHookEx function. If other applications have placed the same hook, this will in
many cases prevent the other hook from being called. If the hook accepts a True return
value to indicate the message was handled, setting nodef to non-zero will return True. For
CBTHooks, setting nodef to non-zero will cause the value specified by the
BlockCBTOperation parameter to be returned.

Hook Examples
 This example demonstrates how to detect when the user has clicked the right

mouse button over any form or control in your application. The first
implementation is based on using the Desaware.shcomponent.dll WinHook
component. The second implementation is based on using the dwshk80.ocx
WinHook Control.

SpyWorksDotNet WinHook component implementation

1. Add the Desaware.shcomponent.dll reference to your project. Declare a WinHook
object in the appropriate form, class or module. Create a new instance of the
WinHook object.

[VB]
Imports Desaware.SpyWorks
Friend WinHook1 As WinHook
WinHook1 = New WinHook()

[C#]
using Desaware.SpyWorks;
internal WinHook WinHook1;
WinHook1 = new WinHook();

2. Create a new instance of the WinHook object’s WindowsMessageList (Messages
property).

[VB]
WinHook1.Messages = New WindowsMessageList()

[C#]
WinHook1.Messages = new WindowsMessageList();

3. Using the AddMessage method of the WindowsMessageList object, add the
MouseMessages.WM_RBUTTONDOWN message to the messages list.

[VB]
WinHook1.Messages.AddMessage(MouseMessages.WM_RBUTTONDOWN)

[C#]
WinHook1.Messages.AddMessage(MouseMessages.WM_RBUTTONDOWN);

 - 35 -

4. Set the WinHook object’s Monitor property to “HookMonitor.ThisProcess”.

[VB]
WinHook1.Monitor = HookMonitor.ThisProcess

[C#]
WinHook1.Monitor = HookMonitor.ThisProcess;

5. Set the WinHook object’s HookType property to “HookTypes.Mouse”.
[VB]
WinHook1.HookType = HookTypes.Mouse

[C#]
WinHook1.HookType = HookTypes.Mouse;

6. Create an OnMouseHook function to handle the WinHook object’s
OnMouseHook event, and connect the event handler to the WinHook object’s
OnMouseHook event.

[VB]
Private Sub WinHook1_OnMouseHook(ByVal sender As Object, ByVal e As
MouseHookEventArgs)
 Debug.WriteLine "User right clicked on " + e.hwnd.ToString
End Sub

AddHandler WinHook1.OnMouseHook, AddressOf WinHook1_OnMouseHook

[C#]
private void WinHook1_OnMouseHook(object sender, MouseHookEventArgs e)
{
 Debug.WriteLine "User right clicked on " + e.hwnd.ToString()
}

WinHook1.OnMouseHook += new
MouseHookEventHandler(WinHook1_OnMouseHook);

7. To start detecting for the message, set the WinHook object’s Enabled property to
True.

[VB]
WinHook1.Enabled = True

[C#]
WinHook1.Enabled = true;

8. When finished using the WinHook object, set the Enabled property to False to
stop the message processing. Before deleting the object, disconnect the
OnMouseHook event.

[VB]
WinHook1.Enabled = False
RemoveHandler WinHook1.OnMouseHook, AddressOf WinHook1_OnMouseHook

[C#]
WinHook1.Enabled = false;
WinHook1.OnMouseHook -= new
MouseHookEventHandler(WinHook1_OnMouseHook);

 - 36 -

dwshk80.ocx WinHook Control implementation
1. Add the Desaware SpyWorks Windows Hook Control component to your project.

Add a WinHook control to Form1. To add a reference to the Hook control, select
the Desaware dwshk80 v8 Hook Control from the COM tab of the Add Reference
form. To add the Hook control to your form, you may need to add it to your
toolbox first by using the Customize Toolbox command and adding the Desaware
dwshk80 v8 hook Hook Control from the COM Components tab of the Customize
Toolbox form.

2. Select the WinHook control’s Messages property to display the Select Messages
form and Add the WM_RBUTTONDOWN message to the Selected Messages list.

3. Set the WinHook control’s Monitor property to “4 – This Task”.
4. Set the WinHook control’s HookType property to “1 - WH_MOUSE”.
5. In Form_Load event of Form1, set the WinHook control’s HookEnabled property

to True.
6. Attach the following code to the WinHook control’s MouseProc.

[VB]
Debug.WriteLine "User right clicked on " + e.wnd.ToString()

[C#]
Debug.WriteLine "User right clicked on " + e.wnd.ToString();

 This example demonstrates how to monitor the entire system to determine
application switching. The first implementation is based on using the
Desaware.shcomponent.dll WinHook component. The second implementation is
based on using the dwshk80.ocx WinHook Control.

SpyWorksDotNet WinHook component implementation

1. Add the Desaware.shcomponent.dll reference to your project. Declare a WinHook
object in the appropriate form, class or module. Create a new instance of the
WinHook object.

[VB]
Imports Desaware.SpyWorks
Friend WinHook1 As WinHook
WinHook1 = New WinHook()

[C#]
using Desaware.SpyWorks;
internal WinHook WinHook1;
WinHook1 = new WinHook();

2. Create a new instance of the WinHook object’s WindowsMessageList (Messages
property).

[VB]
WinHook1.Messages = New WindowsMessageList()

[C#]
WinHook1.Messages = new WindowsMessageList();

 - 37 -

3. Using the AddMessage method of the WindowsMessageList object, add the
StandardMessages.WM_ACTIVATEAPP message to the messages list.

[VB]
WinHook1.Messages.AddMessage(StandardMessages.WM_ACTIVATEAPP)

[C#]
WinHook1.Messages.AddMessage(StandardMessages.WM_ACTIVATEAPP);

4. Set the WinHook object’s Monitor property to “HookMonitor.EntireSystem”.
[VB]
WinHook1.Monitor = HookMonitor.EntireSystem

[C#]
WinHook1.Monitor = HookMonitor.EntireSystem;

5. Set the WinHook object’s HookType property to “HookTypes.CallWndProc”.
[VB]
WinHook1.HookType = HookTypes.CallWndProc

[C#]
WinHook1.HookType = HookTypes.CallWndProc;

6. Create an OnMessageHook function to handle the WinHook object’s
OnMessageHook event, and connect the event handler to the WinHook object’s
OnMessageHook event. Add code to the OnMessageHook event to indicate that
another application has been activated.

[VB]
Private Declare Auto Function GetWindowThreadProcessId Lib "User32"
(ByVal hwnd As Integer, ByRef lpdwProcessId As Integer) As Integer

Private Sub WinHook1_OnMessageHook(ByVal sender As Object, ByVal e As
MessageHookEventArgs)
 Static currentprocessid As Integer
 Dim threadid, processid As Integer

 If e.wp Then
 threadid = GetWindowThreadProcessId(e.hwnd, processid)
 If processid <> currentprocessid Then
 currentprocessid = processid
 Debug.WriteLine "Active process changed to " &
Hex$(currentprocessid)
 End If

 Debug.WriteLine Hex$(e.hwnd) & " window activated, thread " &
Hex$(e.lp) & " is de-activated"
 Else
 Debug.WriteLine Hex$(e.hwnd) & " window de-activated, thread "
& Hex$(e.lp) & " activated"
 End If
End Sub

AddHandler WinHook1.OnMessageHook, AddressOf WinHook1_OnMessageHook

[C#]

 - 38 -

[DllImport("user32.dll")] internal static extern int
GetWindowThreadProcessId (int hwnd, ref int lpdwProcessId);
int currentprocessid;

private void WinHook1_OnMessageHook (object sender,
MessageHookEventArgs e)
{
 int threadid, processid = 0;

 if (e.wp != 0)
 {
 threadid = GetWindowThreadProcessId(e.hwnd.ToInt32(), ref
processid);

 if (processid != currentprocessid)
 {
 currentprocessid = processid;
 Debug.WriteLine("Active process changed to " +
currentprocessid.ToString("x"));
 }

 Debug.WriteLine(e.hwnd.ToInt32().ToString("x") + " window
activated, thread " + e.lp.ToString("x") + " is de-activated");
 }

 else
 Debug.WriteLine(e.hwnd.ToInt32().ToString("x") + " window de-
activated, thread " + e.lp.ToString("x") + " activated");
}

WinHook1.OnMessageHook += new
MessageHookEventHandler(WinHook1_OnMessageHook);

7. To start detecting for the message, set the WinHook object’s Enabled property to
True.

[VB]
WinHook1.Enabled = True

[C#]
WinHook1.Enabled = true;

8. When finished using the WinHook object, set the Enabled property to False to
stop the message processing. Before deleting the object, disconnect the
OnMessageHook event.

[VB]
WinHook1.Enabled = False
RemoveHandler WinHook1.OnMessageHook, AddressOf WinHook1_OnMessageHook

[C#]
WinHook1.Enabled = false;
WinHook1.OnMessageHook -= new
MessageHookEventHandler(WinHook1_OnMessageHook);

dwshk80.ocx WinHook Control implementation

 - 39 -

1. Add the Desaware SpyWorks Windows Hook Control component to your project.
Add a WinHook control to Form1.

2. Select the WinHook control’s Messages property to display the Select Messages
form and Add the WM_ACTIVATEAPP message from the Standard message
group to the Selected Messages list. We recommend Daniel Appleman’s Visual
Basic Programmer’s Guide to the Win32 API book as a reference guide to the
Windows messages.

3. Set the WinHook control’s HookType property to “4 – WH_CALLWNDPROC”
4. Set the WinHook control’s Monitor property to “6 – Entire System”.
5. In Form_Load event of Form1, set the WinHook control’s HookEnabled property

to True.
6. Declare the GetWindowThreadProcessId API function and attach the following

VB code to the WinHook control’s WndMessage event (since we are using the
HookType – CallWndProc, the WndMessage event is triggered when messages
are detected).

[VB]
Private Declare Auto Function GetWindowThreadProcessId Lib "User32"
(ByVal hwnd As Integer, ByRef lpdwProcessId As Integer) As Integer

' If you are detecting more than one Windows message, you want to
' compare the msg parameter here to determine which message you
' received. In our case, we just want to detect when an application has
' been switched.
Private Sub WinHook1_WndMessage(ByVal sender As Object, ByVal e As
AxDWSHK80Lib._DDwshkEvents_WndMessageEvent) Handles WinHook1.WndMessage
 Static currentprocessid As Integer
 Dim threadid, processid As Integer

 If e.wp Then
 threadid = GetWindowThreadProcessId(e.wnd, processid)
 If processid <> currentprocessid Then
 currentprocessid = processid
 Debug.WriteLine "Active process changed to " &
Hex$(currentprocessid)
 End If

 Debug.WriteLine Hex$(e.wnd) & " window activated, thread " &
Hex$(e.lp) & " is de-activated"
 Else
 Debug.WriteLine Hex$(e.wnd) & " window de-activated, thread " &
Hex$(e.lp) & " activated"
 End If
End Sub

[C#]
[DllImport("user32.dll")] internal static extern int
GetWindowThreadProcessId (int hwnd, ref int lpdwProcessId);

int currentprocessid;

// If you are detecting more than one Windows message, you want to
// compare the msg parameter here to determine which message you

 - 40 -

// received. In our case, we just want to detect when an application
// has been switched.
private void WinHook1_WndMessage (object sender,
AxDWSHK80Lib._DDwshkEvents_WndMessageEvent e)
{
 int threadid, processid = 0;

 if (e.wp != 0)
 {
 threadid = GetWindowThreadProcessId(e.wnd, ref processid);

 if (processid != currentprocessid)
 {
 currentprocessid = processid;
 Debug.WriteLine("Active process changed to " +
currentprocessid.ToString("x"));
 }

 Debug.WriteLine(e.hwnd.ToString("x") + " window activated,
thread " + e.lp.ToString("x") + " is de-activated");
 }

 else
 Debug.WriteLine(e.hwnd. ToString("x") + " window de-
activated, thread " + e.lp.ToString("x") + " activated");
}

This example demonstrates how to detect the Enter key and substitute the Tab key in its
place. This is useful if you have an Accept command button on a form but wish to allow
the user to use either the Enter key or Tab key to move to another control (e.g. a different
data field) under certain circumstances.

SpyWorksDotNet WinHook component implementation

1. Add the Desaware.shcomponent.dll reference to your project. Declare a KeyHook
object in the appropriate form, class or module. Create a new instance of the
KeyHook object.

[VB]
Imports Desaware.SpyWorks
Friend KeyHook1 As KeyHook
KeyHook1 = New KeyHook()

[C#]
using Desaware.SpyWorks;
internal KeyHook KeyHook1;
KeyHook1 = new KeyHook();

2. Create a new instance of the KeyHook object’s KeyList (KeyFilterList property)
object.

[VB]
KeyHook1.Messages = New KeyFilterList()

[C#]
KeyHook1.Messages = new KeyFilterList();

 - 41 -

3. Using the AddKey method of the KeyList object, add the VirtualKeys.VK_Enter
key to the keys list.

[VB]
KeyHook1.KeyFilterList.AddKey(VirtualKeys.VK_Enter, KeyFlags.None)

[C#]
KeyHook1.KeyFilterList.AddKey(VirtualKeys.VK_Enter, KeyFlags.None);

4. Set the KeyHook object’s Monitor property to “HookMonitor.ThisProcess”.
[VB]
KeyHook1.Monitor = HookMonitor.ThisProcess

[C#]
KeyHook1.Monitor = HookMonitor.ThisProcess;

5. Set the KeyHook object’s HookType property to “HookTypes.Keyboard”.
[VB]
KeyHook1.HookType = HookTypes.Keyboard

[C#]
KeyHook1.HookType = HookTypes.Keyboard;

6. Create an OnKeyDown function to handle the KeyHook object’s OnKeyDown
event, and connect the event handler to the KeyHook object’s OnKeyDown event.
Add code to the OnKeyDown event to discard the Enter key and send the Tab
key.

[VB]
AddHandler WinHook1.OnKeyDown, AddressOf WinHook1_OnKeyDown

Private Sub WinHook1_OnKeyDown (ByVal sender As Object, ByVal e As
KeyboardHookEventArgs)
 e.discard = True
 SendKeys.Send("{TAB}")
End Sub

[C#]
KeyHook1.OnKeyDown += new KeyDownHookEventHandler(KeyHook1_OnKeyDown);

private void KeyHook1_OnKeyDown(object sender, KeyboardHookEventArgs e)
{
 e.discard = true;
 SendKeys.Send("{TAB}");
}

7. To start detecting for the message, set the KeyHook object’s Enabled property to
True.

[VB]
KeyHook1.Enabled = True

[C#]
KeyHook1.Enabled = true;

 - 42 -

8. When finished using the KeyHook object, set the Enabled property to False to
stop the message processing. Before deleting the object, disconnect the
OnKeyDown event.

[VB]
KeyHook1.Enabled = False
RemoveHandler KeyHook1.OnKeyDown, AddressOf KeyHook1_OnKeyDown

[C#]
KeyHook1.Enabled = false;
KeyHook1.OnKeyDown -= new KeyDownHookEventHandler(KeyHook1_OnKeyDown);

dwshk80.ocx WinHook Control implementation

1. Add the Desaware SpyWorks Windows Hook Control component to your project.
Add a WinHook control to Form1. To add a reference to the Hook control, select
the Desaware dwshk80 v8 Hook Control from the COM tab of the Add Reference
form. To add the Hook control to your form, you may need to add it to your
toolbox first by using the Customize Toolbox command and adding the Desaware
dwshk80 v8 Hook Control from the COM Components tab of the Customize
Toolbox form.

2. Select the WinHook control’s Keys property to display the Select Keys form.
Select the Enter key from the Available Keys list box and Add the key to the
selected list.

3. Set the KeyboardHook property to “1 – This Task” when appropriate to enable
the keyboard hook.

4. Attach the following code to the WinHook control’s KeyDownHook event:
[VB]
Private Sub KeyHook1_KeyDownHook(ByVal sender As Object, ByVal e As
AxDWSHK80Lib._DDwshkEvents_KeyDownHookEvent) Handles
KeyHook1.KeyDownHook
 e.discard = True
 SendKeys.Send("{TAB}")
End Sub

[C#]
private void KeyHook1_OnKeyDown(object sender,
AxDWSHK80Lib._DDwshkEvents_KeyDownHookEvent e)
{
 e.discard = true;
 SendKeys.Send("{TAB}");
}

This example demonstrates how to detect the Control F2 and Control F3 keys and run a
subroutine. This is useful if you want to create global hot keys that the user can hit at any
time (even when your application is not active or is hidden).

SpyWorksDotNet WinHook component implementation

1. Add the Desaware.shcomponent.dll reference to your project. Declare a KeyHook
object in the appropriate form, class or module. Create a new instance of the
KeyHook object.

[VB]
Imports Desaware.SpyWorks

 - 43 -

Friend KeyHook1 As KeyHook
KeyHook1 = New KeyHook()

[C#]
using Desaware.SpyWorks;
internal KeyHook KeyHook1;
KeyHook1 = new KeyHook();

2. Create a new instance of the KeyHook object’s KeyList (KeyFilterList property)
object.

[VB]
KeyHook1.Messages = New KeyFilterList()

[C#]
KeyHook1.Messages = new KeyFilterList();

3. Using the AddKey method of the KeyList object, add the
FunctionKeys.Function_F2 and FunctionKeys.Function_F3 keys to the keys list.

[VB]
KeyHook1.KeyFilterList.AddKey(FunctionKeys.Function_F2, KeyFlags.Ctrl)
KeyHook1.KeyFilterList.AddKey(FunctionKeys.Function_F3, KeyFlags.Ctrl)

[C#]
KeyHook1.KeyFilterList.AddKey(FunctionKeys.Function_F2, KeyFlags.Ctrl);
KeyHook1.KeyFilterList.AddKey(FunctionKeys.Function_F3, KeyFlags.Ctrl);

4. Set the KeyHook object’s Monitor property to “HookMonitor.EntireSystem”.
[VB]
KeyHook1.Monitor = HookMonitor.EntireSystem

[C#]
KeyHook1.Monitor = HookMonitor.EntireSystem;

5. Set the KeyHook object’s HookType property to “HookTypes.Keyboard”.
[VB]
KeyHook1.HookType = HookTypes.Keyboard

[C#]
KeyHook1.HookType = HookTypes.Keyboard;

6. Create an OnKeyDown function to handle the KeyHook object’s OnKeyDown
event, and connect the event handler to the KeyHook object’s OnKeyDown event.
Add code to the OnKeyDown event to discard the Enter key and send the Tab
key.

[VB]
AddHandler WinHook1.OnKeyDown, AddressOf WinHook1_OnKeyDown

Private Sub WinHook1_OnKeyDown (ByVal sender As Object, ByVal e As
KeyboardHookEventArgs)
 Select Case e.keycode
 Case FunctionKeys.Function_F2
 FunctionForCtrlF2()
 Case FunctionKeys.Function_F3
 FunctionForCtrlF3()
 End Select

 - 44 -

 ' Next line is optional and depends on whether you want to disable
 ' the Ctrl+F2 & Ctrl+F3 hot keys that may affect other applications
 e.discard = True
End Sub

[C#]
KeyHook1.OnKeyDown += new KeyDownHookEventHandler(KeyHook1_OnKeyDown);

private void KeyHook1_OnKeyDown(object sender, KeyboardHookEventArgs e)
{
 switch (e.keycode)
 {
 case FunctionKeys.Function_F2:
 FunctionForCtrlF2();
 break;
 case FunctionKeys.Function_F3:
 FunctionForCtrlF2();
 break;
 }

 //Next line is optional and depends on whether you want to disable
 //the Ctrl+F2 & Ctrl+F3 hot keys that may affect other applications
 e.discard = true;
}

7. To start detecting for the message, set the KeyHook object’s Enabled property to
True.

[VB]
KeyHook1.Enabled = True

[C#]
KeyHook1.Enabled = true;

8. When finished using the KeyHook object, set the Enabled property to False to
stop the message processing. Before deleting the object, disconnect the
OnKeyDown event.

[VB]
KeyHook1.Enabled = False
RemoveHandler KeyHook1.OnKeyDown, AddressOf KeyHook1_OnKeyDown

[C#]
KeyHook1.Enabled = false;
KeyHook1.OnKeyDown -= new KeyDownHookEventHandler(KeyHook1_OnKeyDown);

dwshk80.ocx WinHook Control implementation

1. Add the Desaware SpyWorks Windows Hook Control component to your project.
Add a WinHook control to Form1. To add a reference to the Hook control, select
the Desaware dwshk80 v8 Hook Control from the COM tab of the Add Reference
form. To add the Hook control to your form, you may need to add it to your
toolbox first by using the Customize Toolbox command and adding the Desaware
dwshk80 v8 Hook Control from the COM Components tab of the Customize
Toolbox form.

 - 45 -

2. Select the WinHook control’s Keys property to display the Select Keys form.
Select the F2 key from the Available Keys list box and check the Control check
box, then Add the key to the selected list. Repeat the process for the F3 key.

3. Set the KeyboardHook property to “2 – Entire System” when appropriate to
enable the keyboard hook.

4. Attach the following code to the WinHook control’s KeyDownHook event:
[VB]
Private Sub WinHook1_KeyDownHook(ByVal sender As Object, ByVal e As
AxDWSHK80Lib._DDwshkEvents_KeyDownHookEvent) Handles
KeyHook1.KeyDownHook
 Select Case e.keycode
 Case Keys.F2
 FunctionForCtrlF2()
 Case Keys.F3
 FunctionForCtrlF3()
 End Select

 ' Next line is optional and depends on whether you want to disable
 ' the Ctrl+F2 & Ctrl+F3 hot keys that may affect other applications
 e.discard = True
End Sub

[C#]
private void WinHook1_KeyDownHook(object sender,
AxDWSHK80Lib._DDwshkEvents_KeyDownHookEvent e)
{
 switch (e.keycode)
 {
 case Keys.F2:
 FunctionForCtrlF2();
 break;
 case Keys.F3:
 FunctionForCtrlF2();
 break;
 }

 //Next line is optional and depends on whether you want to disable
 //the Ctrl+F2 & Ctrl+F3 hot keys that may affect other applications
 e.discard = true;
}

For further information on Hooks
Your best source of information on hooks is the Win32 SDK documentation for the
SetWindowsHookEx API function. This is available on the MSDN library CD-ROM or
online at http://msdn.microsoft.com.
Many SpyWorks examples demonstrate use of hooks.
Refer to the reference section for a complete list of properties and events for the
Windows Hook control and the WinHook and KeyHook objects of the
Desaware.shcomponent.dll component.

 - 46 -

SpyWorks Concepts: dwshengine80.dll function library
IMPORTANT NOTE for those upgrading from previous versions of SpyWorks or Visual
Basic: dwshengine80.dll is a replacement for dwspy36.dll (and before that dwspy32.dll)
from earlier versions of SpyWorks. All functions in dwspy36.dll are included in
dwshengine80.dll and are called in the same way. The dwshengine80.dll dynamic link
library contains a selection of functions that have proven useful over the years. They are
intended to fill holes in the capabilities of Visual Basic or Visual Studio.

dwshengine80.dll function reference
The following functions are exported from dwshengine80.dll and are supported under
Visual Studio .NET.

dwCopyData
This function can be used to copy arbitrary blocks of memory.
[VB]
Declare Sub dwCopyData Lib "dwshengine80.dll" (ByVal source As Integer,
ByVal dest As Integer, ByVal nCount As Integer)

[C#]
[DllImport("dwshengine80.dll")] static extern void dwCopyData (int
source, int dest, int nCount);

source – Source address or object

dest – Destination address

nCount - The number of bytes to copy

Make sure that the destination is large enough to hold all of the data copied into it.

Under Win32 you can use the RtlMoveMemory API function. Note that the source and
destination parameters for that function are opposite of this one.

NOTE: Although this function work in Visual Studio .NET, we recommend that you use
the MarShal namespace instead. Refer to the SpyWorks .NET samples on using the
MarShal namespace to copy data from pointers to .NET data types.

dwGetAddressForObject
This function returns a 32 bit address for the specified object type. You can overload the
source parameter with different data types to retrieve the address for. In this example, it
returns the address for an integer variable.
[VB]
Declare Function dwGetAddressForObject Lib "dwshengine80.dll" (source
As Integer) As Integer

[C#]
[DllImport("dwshengine80.dll")] static extern int dwGetAddressForObject
(ref int source);

source – Source variable to return address for

 - 47 -

NOTE: Although this functions work in Visual Studio .NET, we recommend that you use
the MarShal namespace instead. Refer to the SpyWorks .NET samples on using the
MarShal namespace to copy data from pointers to .NET data types.

dwXAllocateDataFrom
Allocates data from a foreign process’s memory space. You can use the provided
template dwSWXProcessClass class from the dwSpyCrossProcess file.
[VB]
Declare Function dwXAllocateDataFrom Lib "dwshengine80.dll" (ByVal size
As Integer, ByVal foreignPID As Integer) As Integer

[C#]
[DllImport("dwshengine80.dll")] static extern int dwXAllocateDataFrom
(int size, int foreignPID);

size – Size of the buffer to allocate.
foreignPID – ID of the foreign process in which the data is allocated.
Call the dwXFreeDataFrom function to free the memory after you are done using it.

dwXFreeDataFrom
Free data from a foreign memory space which was allocated using
dwXAllocateDataFrom. You can use the provided template dwSWXProcessClass class
from the dwSpyCrossProcess file.
[VB]
Declare Sub dwXFreeDataFrom Lib "dwshengine80.dll" (ByVal foreignbuf As
Integer, ByVal foreignPID As Integer)
[C#]
[DllImport("dwshengine80.dll")] static extern void dwXFreeDataFrom (int
foreignbuf, int foreignPID);

foreignbuf – Address of the foreign buffer to free.
foreignPID – ID of the foreign process in which the data is allocated.

dwXCopyAnsiStringFrom
Copies string data from a foreign process.
[VB]
Declare Function dwXCopyAnsiStringFrom Lib "dwshengine80.dll" (ByVal
foreignbuf As Integer, ByVal foreignPID As Integer) As
<MarshalAs(UnmanagedType.AnsiBStr)> String

[C#]
[DllImport("dwshengine80.dll")][return:
MarshalAs(UnmanagedType.AnsiBStr)] static extern string
dwXCopyAnsiStringFrom (int foreignbuf, int foreignPID);
foreignbuf – Address of the string data.
foreignPID – ID of the foreign process.
The MarshalAs attribute is required so that the .NET Framework will free the BSTR.
Otherwise, it will result in a memory leak. You can use the provided template
dwSWXProcessClass class from the dwSpyCrossProcess file.

 - 48 -

dwXCopyUnicodeStringFrom
Copies string data from a foreign process.
[VB]
Declare Function dwXCopyUnicodeStringFrom Lib "dwshengine80.dll" (ByVal
foreignbuf As Integer, ByVal foreignPID As Integer) As
<MarshalAs(UnmanagedType.AnsiBStr)> String

[C#]
[DllImport("dwshengine80.dll")][return:
MarshalAs(UnmanagedType.AnsiBStr)] static extern string
dwXCopyUnicodeStringFrom (int foreignbuf, int foreignPID);

foreignbuf – Address of the string data.
foreignPID – ID of the foreign process.
The MarshalAs attribute is required so that the .NET Framework will free the BSTR.
Otherwise, it will result in a memory leak. Note that this function Marshals the string as
an Ansi string. This is because the function first converts the Unicode string into an Ansi
BSTR before returning it. You can use the provided template dwSWXProcessClass class
from the dwSpyCrossProcess file.

dwXCopyDataTo
Copies data from a local address to a foreign address.
[VB]
Declare Function dwXCopyDataTo Lib "dwshengine80.dll" (ByVal localdata
As Integer, ByVal foreignbuf As Integer, ByVal size As Short, ByVal
foreignPID As Integer) As Integer

[C#]
[DllImport("dwshengine80.dll")] static extern int dwXCopyDataTo (int
localdata, int foreignbuf, short size, int foreignPID);

localdata – Address of the local data.
foreign – Address to transfer the data to.
size – Size of the data to transfer.
foreignPID – ID of the foreign process.
You can overload this function with different data types for the localdata parameter
depending on the data type involved. Refer to the provided template
dwSWXProcessClass class from the dwSpyCrossProcess file for examples.
Returns -1 on error, 0 on success.

dwXCopyDataFrom
Copies data to a local address from a foreign address.
[VB]
Declare Function dwXCopyDataFrom Lib "dwshengine80.dll" (ByVal
localdata As Integer, ByVal foreignbuf As Integer, ByVal size As Short,
ByVal foreignPID As Integer) As Integer

[C#]
[DllImport("dwshengine80.dll")] static extern int dwXCopyDataFrom (int
localdata, int foreignbuf, short size, int foreignPID);

 - 49 -

localdata – Local address to transfer the data to.
foreign – Foreign address to transfer the data from.
size – Size of the data to transfer.
foreignPID – ID of the foreign process.
You can overload this function with different data types for the localdata parameter
depending on the data type involved. Refer to the provided template
dwSWXProcessClass class from the dwSpyCrossProcess file for examples.
Returns -1 on error, 0 on success.

dwXGetModuleFileName
This function retreives the executable file name (including path) for the specified process
as long as the process has a window.
[VB]
Declare Function dwXGetModuleFileName Lib "dwshengine80.dll" (ByVal pid
As Integer, ByVal modname As String) As String

[C#]
[DllImport("dwshengine80.dll")] static extern string
dwXGetModuleFileName (int pid, string modname);

pid – The ProcessID of the process to retrieve the file name for.
modname – The module name (the module name only, no extension or path). If the
module name is NULL, the file name for the executable will be returned. Otherwise, the
filename for the specified module will be returned.
You can use the provided template dwSWXProcessClass class from the
dwSpyCrossProcess file.

dwXGetEditLine
Retrieves a line of text from a multi-line edit window located in another process.
[VB]
Declare Function dwXGetEditLine Lib "dwshengine80.dll" (ByVal hwnd As
Integer, ByVal linenumber As Integer) As String

[C#]
[DllImport("dwshengine80.dll")] static extern string dwXGetEditLine
(int hwnd, int linenumber);

hwnd – Window handle of multi-line edit window to retrieve text from.
linenumber – Line number of the text to retrieve.
Returns the text of the specified line on success, empty string on error.

dwXSetForegroundWindow
Similar to the SetForegroundWindow API function except this function will force the
specified window to be the foreground Window in Windows 2000 and XP (rather than
flashing the Window’s caption).
[VB]
Declare Function dwXSetForegroundWindow Lib "dwshengine80.dll" (ByVal
hwnd As Integer) As Integer

[C#]

 - 50 -

[DllImport("dwshengine80.dll")] static extern int
dwXSetForegroundWindow (int hwnd);

hwnd – Window handle of window to bring to the foreground.
Returns -1 if invalid window handle, 0 if window cannot be brought to the foreground, >
0 on success.

Application Note: Using Cross Process Memory Access with
SpyWorks
SpyWorks has long been established as the premier tool for cross task subclassing –
allowing you to easily intercept messages from other applications. Once you have the
message you can examine it and any data that it refers to. You can discard messages or
modify its parameters.
But what if a message parameter contains a pointer to a string or structure in memory?
Can you access that data?
Generally speaking the answer is no. Each Win32 process has its own memory space.
That means that a pointer is only valid in the application that allocated the memory.
Consider the problem of retrieving data from a rich text control.

Using the EM_GETTEXTRANGE message
The XTaskRichText sample application contains a single rich text control. A label
control at the top of the form displays the window handle of the rich text control. It is
loaded during the Form_Load event using the following code:

[VB]
Private Sub frmGetText_Load(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles MyBase.Load
 Label1.Text = "Rich Text Hwnd: " + RichTextBox1.Handle.ToString
End Sub

[C#]
private void frmGetText_Load(object sender, System.EventArgs e)
{
 label1.Text = "Rich Text Hwnd: " + richTextBox1.Handle.ToString();
}

 - 51 -

Figure 1 – XTaskRichText form in action.

The EM_GETTEXTRANGE message is used to retrieve text data from a rich text
control. The wParam parameter of this message is always zero. The lParam parameter is a
pointer to a TEXTRANGE structure that is defined as follows:

[VB]
<StructLayout(LayoutKind.Sequential, Pack:=1)> _
Friend Structure TEXTRANGE
 Dim chrg As CHARRANGE
 Dim lpstrText As Integer
End Structure

[C#]
[StructLayout(LayoutKind.Sequential, Pack=1)] public struct TEXTRANGE
{
 public CHARRANGE chrg;
 public int lpstrText;
}

The chrg field is a structure that defines the first and last character position of the text
you want to retrieve from the rich text control. The lpstrText field is a pointer to a text
buffer to load with the string data.
This structure contains a CHARRANGE structure that is defined as follows:

[VB]
<StructLayout(LayoutKind.Sequential, Pack:=1)> _
Friend Structure CHARRANGE
 Dim cpMin As Integer
 Dim cpMax As Integer
End Structure

[C#]
[StructLayout(LayoutKind.Sequential, Pack=1)] public struct CHARRANGE
{

 - 52 -

 public int cpMin;
 public int cpMax;
}

Let's take a look at how you would use this message to retrieve text from rich text box
that exists within your own process:

In Process Example
The following code retrieves text from a rich text box within the current process.

[VB]
Private Declare Auto Function SendMessageTEXTRANGE Lib "user32" Alias
"SendMessage" (ByVal hwnd As Integer, ByVal wMsg As Integer, ByVal
wParam As Integer, ByRef lParam As TEXTRANGE) As Integer

Private Const WM_USER As Integer = &H400
Private Const EM_GETTEXTRANGE As Integer = WM_USER + 75

Private Sub cmdGet_Click(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles cmdGet.Click
 Dim tr As TEXTRANGE
 Dim deststring As String
 Dim res As Integer
 Dim useHwnd As Integer

 If txtHwnd.Text = "" Then
 MessageBox.Show("Invalid window")
 Exit Sub
 End If
 useHwnd = CInt(txtHwnd.Text)
 tr.chrg.cpMax = 1023
 tr.lpstrText = Marshal.AllocHGlobal(1024).ToInt32

 res = SendMessageTEXTRANGE(useHwnd, EM_GETTEXTRANGE, 0, tr)
 If res > 0 Then
 deststring =
Marshal.PtrToStringAuto(IntPtr.op_Explicit(tr.lpstrText))
 Text1.Text = deststring
 Else
 MessageBox.Show("EM_GETTEXTRANGE failed")
 End If

 Marshal.FreeHGlobal(IntPtr.op_Explicit(tr.lpstrText))
End Sub

[C#]
[DllImport("user32.dll", CharSet= CharSet.Auto)] private static extern
int SendMessage (int hwnd, int wMsg, int wParam, ref TEXTRANGE lParam);

private const int WM_USER = 0x400;
private const int EM_GETTEXTRANGE = WM_USER + 75;

private void cmdGet_Click(object sender, System.EventArgs e)
{
 TEXTRANGE tr;

 - 53 -

 string deststring;
 int res, useHwnd;

 if (txtHwnd.Text == "")
 {
 MessageBox.Show("Invalid window");
 return;
 }
 useHwnd = Convert.ToInt32(txtHwnd.Text);
 tr = new TEXTRANGE();
 tr.chrg.cpMax = 1023;
 tr.lpstrText = Marshal.AllocHGlobal(1024).ToInt32();

 res = SendMessage(useHwnd, EM_GETTEXTRANGE, 0, ref tr);
 if (res > 0)
 {
 deststring = Marshal.PtrToStringAuto((IntPtr)tr.lpstrText);
 textBox1.Text = deststring;
 }
 else
 MessageBox.Show("EM_GETTEXTRANGE failed");

 Marshal.FreeHGlobal((IntPtr)tr.lpstrText);
}

Let's take a closer look at this code.
First, you should enter the window handle of the rich text box into the txtHwnd.Text
control. Type in the same number that you see in the label control. This window handle is
copied into the useHwnd variable.

[VB]
useHwnd = CInt(txtHwnd.Text)
[C#]
useHwnd = Convert.ToInt32(txtHwnd.Text);

For the purposes of this example, we arbitrarily load only the first 1023 characters. A real
example would use other messages to determine the length of available text. The
EM_GETTEXTRANGE considers the cpMax field of the CHRANGE structure to
represent the maximum character number, so setting cpMin to zero and cpMax to 1023
will retrieve the entire contents of the rich text box up to 1023 characters.

[VB]
tr.chrg.cpMax = 1023
[C#]
tr.chrg.cpMax = 1023;

The lpstrText field of the TEXTRANGE structure needs to be a pointer to a buffer to load
with the text. In this case the buffer will be a memory buffer returned by
Marshal.AllocHGlobal.

[VB]
tr.lpstrText = Marshal.AllocHGlobal(1024).ToInt32
[C#]

 - 54 -

tr.lpstrText = Marshal.AllocHGlobal(1024).ToInt32();

Next the SendMessageTEXTRANGE (alias of SendMessage) function sends the message
to the rich text control, passing a pointer (by reference) to the TEXTRANGE structure as
the lParam parameter as follows:

[VB]
res = SendMessageTEXTRANGE(useHwnd, EM_GETTEXTRANGE, 0, tr)
[C#]
res = SendMessage(useHwnd, EM_GETTEXTRANGE, 0, ref tr);

The message returns the number of characters read. If non zero, the function uses the
Marshal.PtrToStringAuto function to copy the data from the buffer into a string.

[VB]
If res > 0 Then
 deststring =
Marshal.PtrToStringAuto(IntPtr.op_Explicit(tr.lpstrText))
 Text1.Text = deststring
Else
 MessageBox.Show("EM_GETTEXTRANGE failed")
End If
[C#]
if (res > 0)
{
 deststring = Marshal.PtrToStringAuto((IntPtr)tr.lpstrText);
 textBox1.Text = deststring;
}
else
 MessageBox.Show("EM_GETTEXTRANGE failed");

Finally, the memory buffer is freed by calling Marshal.FreeHGlobal.

[VB]
Marshal.FreeHGlobal(IntPtr.op_Explicit(tr.lpstrText))
[C#]
Marshal.FreeHGlobal((IntPtr)tr.lpstrText);

Cross Process Example
Try running a second instance of the XTaskGet program. Enter the window handle of the
second application's rich text box into the window handle text box of the first application,
and click on the "Get Text InProc" button.
You'll get a message indicating that the EM_GETTEXTRANGE failed.
Why? Because the lParam parameter of the EM_GETTEXTRANGE message was set to
point to the location in memory of the TEXTRANGE structure in your application. But
this memory location is invalid in the other process. You are sure to get either a memory
exception or some sort of memory corruption when the other process tries to read the
invalid memory location or load data into the string buffer (which is also a pointer to an
invalid memory location).

 - 55 -

In order to solve this problem, you must find a way to allocate a memory buffer in the
second application (which will be referred to from now on as the "foreign" application, to
distinguish it from the running application that is sending the message). You'll also need
a way to copy data to and from this foreign application. Fortunately, Desaware's
SpyWorks makes it easy to handle both operations.
The cmdGetX_Click event is shown below:

[VB]
Private Sub cmdGetX_Click(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles cmdGetX.Click
 Dim tr As TEXTRANGE
 Dim ForeignProcessId As Integer
 Dim deststring As String
 Dim res As Integer
 Dim useHwnd As Integer
 Dim textstringlen As Integer

 If txtHwnd.Text = "" Then
 MessageBox.Show("Invalid window")
 Exit Sub
 End If

 useHwnd = CInt(txtHwnd.Text)
 GetWindowThreadProcessId(useHwnd, ForeignProcessId)

 Dim bytearrayXProcess As New dwSWXProcessClass(ForeignProcessId,
1024)

 tr.chrg.cpMax = 1023
 tr.lpstrText = bytearrayXProcess.XProcessBuffer

 Dim textrangeXProcess As New dwSWXProcessClass(ForeignProcessId,
CType(Marshal.SizeOf(tr), Short))

 textrangeXProcess.CopyToMemoryByTEXTRANGE(tr)

 res = SendMessage(useHwnd, EM_GETTEXTRANGE, 0,
textrangeXProcess.XProcessBuffer)

 If res > 0 Then
 textrangeXProcess.CopyFromMemoryByTEXTRANGE(tr)

 deststring = bytearrayXProcess.GetAnsiStringFromMemory()
 textstringlen = deststring.Length

 ' if the string length does not match, then try unicode string
 If textstringlen <> res Then
 deststring = bytearrayXProcess.GetUnicodeStringFromMemory()
 End If

 Text1.Text = deststring

 Else
 MessageBox.Show("EM_GETTEXTRANGE failed.")
 End If

 - 56 -

 textrangeXProcess.FreeMemory()
 bytearrayXProcess.FreeMemory()
End Sub

[C#]
private void cmdGetX_Click(object sender, System.EventArgs e)
{
 TEXTRANGE tr = new TEXTRANGE();
 int ForeignProcessId = 0;
 string deststring;
 int res;
 int useHwnd;
 int textstringlen;

 if (txtHwnd.Text == "")
 {
 MessageBox.Show("Invalid Window");
 return;
 }

 useHwnd = Convert.ToInt32(txtHwnd.Text);

 GetWindowThreadProcessId(useHwnd, ref ForeignProcessId);

 dwSWXProcessClass bytearrayXProcess = new
dwSWXProcessClass(ForeignProcessId, 1024);

 tr.chrg.cpMax = 1023;
 tr.lpstrText = bytearrayXProcess.XProcessBuffer;

 dwSWXProcessClass textrangeXProcess = new
dwSWXProcessClass(ForeignProcessId, (short)Marshal.SizeOf(tr));

 textrangeXProcess.CopyToMemoryByTEXTRANGE(ref tr);

 res = SendMessage(useHwnd, EM_GETTEXTRANGE, 0,
textrangeXProcess.XProcessBuffer);

 if (res > 0)
 {
 textrangeXProcess.CopyFromMemoryByTEXTRANGE(ref tr);

 deststring = bytearrayXProcess.GetAnsiStringFromMemory();
 textstringlen = deststring.Length;

 // if the string length does not match, then try unicode string
 if (textstringlen != res)
 deststring =
bytearrayXProcess.GetUnicodeStringFromMemory();

 textBox1.Text = deststring;
 }

 else
 MessageBox.Show("EM_GETTEXTRANGE failed.");

 - 57 -

 textrangeXProcess.FreeMemory();
 bytearrayXProcess.FreeMemory();
}

Let's look at this function in detail.
Several new variables are used. The ForeignProcessId is used to hold the process ID of
the process containing the rich text box.

[VB]
Dim ForeignProcessId As Integer
[C#]
int ForeignProcessId = 0;

The bytearrayXProcess and textrangeXProcess variables contain the new
dwSWXProcessClass object defined in the dwSpyWorksCrossProcess module file. The
dwSWXProcessClass class wraps some of the SpyWorks Cross Process functions and is
used to represent a block of memory in another process.
The bytearrayXProcess variable allocates a block of memory in the foreign process and
will contain the text retrieved from the rich text box.

[VB]
Dim bytearrayXProcess As New dwSWXProcessClass(ForeignProcessId, 1024)
[C#]
dwSWXProcessClass bytearrayXProcess = new
dwSWXProcessClass(ForeignProcessId, 1024);

The textrangeXProcess variable allocates a block of memory in the foreign process and
will contain a TEXTRANGE structure.

[VB]
Dim textrangeXProcess As New dwSWXProcessClass(ForeignProcessId,
CType(Marshal.SizeOf(tr), Short))
[C#]
dwSWXProcessClass textrangeXProcess = new
dwSWXProcessClass(ForeignProcessId, (short)Marshal.SizeOf(tr));

The useHwnd variable and TEXTRANGE cpMax field is set in the same way as in the
previous application. The only difference is that the txtHwnd text box should contain the
window handle of the rich text box from the foreign application.

[VB]
If txtHwnd.Text = "" Then
 MessageBox.Show("Invalid window")
 Exit Sub
End If
useHwnd = CInt(txtHwnd.Text)
tr.chrg.cpMax = 1023

[C#]
if (txtHwnd.Text == "")
{
 MessageBox.Show("Invalid window");
 return;

 - 58 -

}
useHwnd = Convert.ToInt32(txtHwnd.Text);
tr = new TEXTRANGE();
tr.chrg.cpMax = 1023;

It's easy to obtain the process ID of the foreign process. The GetWindowThreadProcessId
function retrieves the thread ID and process ID for any window. In this case you'll use the
window handle of the foreign rich text box as shown here:

[VB]
Private Declare Function GetWindowThreadProcessId Lib "user32" (ByVal
hwnd As Integer, ByRef lpdwProcessId As Integer) As Integer
GetWindowThreadProcessId(useHwnd, ForeignProcessId)

[C#]
[DllImport("user32.dll")] private static extern int
GetWindowThreadProcessId (int hwnd, ref int lpdwProcessId);
GetWindowThreadProcessId(useHwnd, ref ForeignProcessId);

We need two blocks of memory in the foreign process - one 1024 characters long to hold
the text copied from the rich text box. Another needs to be the size of a TEXTRANGE
structure to hold the retrieval information. The bytearrayXProcess and textrangeXProcess
objects were earlier created with the required memory blocks.
You can see that we still have a local TEXTRANGE variable named tr which is loaded
with data in a similar manner as before. The difference is that the lpstrText field now
refers to the bytearrayXProcess variable’s XProcessBuffer property that contains a
memory address in another process to hold the string data. We'll copy the local
TEXTRANGE structure into the foreign memory buffer referred to by the
textrangeXProcess variable, then pass the memory address of the textrangeXProcess
buffer with the EM_GETTEXTRANGE message.

[VB]
tr.lpstrText = bytearrayXProcess.XprocessBuffer
textrangeXProcess.CopyToMemoryByTEXTRANGE(tr)
res = SendMessage(useHwnd, EM_GETTEXTRANGE, 0,
textrangeXProcess.XProcessBuffer)

[C#]
tr.lpstrText = bytearrayXProcess.XProcessBuffer;
textrangeXProcess.CopyToMemoryByTEXTRANGE(ref tr);
res = SendMessage(useHwnd, EM_GETTEXTRANGE, 0,
textrangeXProcess.XProcessBuffer);

The return value from sending the EM_GETTEXTRANGE contains the length of the
string retrieved. If a string was retrieved successfully, we retrieve the string from the
foreign buffer.
Now in this particular case, we don't really need to copy the TEXTRANGE structure
from the foreign memory block back to the local structure, because the foreign process
didn’t change it during the message processing. The textrangeXProcess variable’s
CopyFromMemoryByTEXTRANGE function can be used to copy the data back.

 - 59 -

[VB]
textrangeXProcess.CopyFromMemoryByTEXTRANGE(tr)
[C#]
textrangeXProcess.CopyFromMemoryByTEXTRANGE(ref tr);

If a string was retrieved successfully, we call the bytearrayXProcess variable’s
GetAnsiStringFromMemory or GetUnicodeStringFromMemory function to retrieve the
string and set the text box. Now all we need to figure out is whether an ansi or unicode
string was returned in the buffer. But here’s an issue we ran into. When the process id is a
.NET application containing the .NET edition of the RichTextBox control, it places a
unicode string in the buffer. The same test done on a VB 6 compiled application
containing the VB6 edition of the RichTextBox control returns an ansi string. It doesn’t
matter how SendMessage was declared, we would get the same behavior. Since
SendMessage returns the length of the string, we know how long the data is supposed to
be. So, we try ansi string first, and then if the string length does not match, we try the
unicode string.

[VB]
deststring = bytearrayXProcess.GetAnsiStringFromMemory()
textstringlen = deststring.Length

' if the string length does not match, then try unicode string
If textstringlen <> res Then
 deststring = bytearrayXProcess.GetUnicodeStringFromMemory()
End If

Text1.Text = deststring

[C#]
deststring = bytearrayXProcess.GetAnsiStringFromMemory();
textstringlen = deststring.Length;

// if the string length does not match, then try unicode string
if (textstringlen != res)
 deststring = bytearrayXProcess.GetUnicodeStringFromMemory();

textBox1.Text = deststring;

Finally, it is important to free the memory blocks so that you avoid creating a memory
leak in the foreign application:

[VB]
textrangeXProcess.FreeMemory()
bytearrayXProcess.FreeMemory()
[C#]
textrangeXProcess.FreeMemory();
bytearrayXProcess.FreeMemory();

Conclusion
Working with foreign memory spaces can be an incredibly complex task, as attested to
the fact that a number of very advanced articles have been written on the subject for C++

 - 60 -

programmers. However, Desaware's SpyWorks includes a robust set of functions that
make working with foreign memory buffers almost as easy as working with local
memory. These functions are wrapped by the dwSWXProcessClass object contained in
the dwSpyWorksCrossProcess module file.

SpyWorks Concepts: Exporting Functions
SpyWorks 5 introduced a new technology called Dynamic Export Technology which
allows you to export functions from any ActiveX DLL including ActiveX controls. This
technology provides outstanding performance and ease of use, yet avoids modifying your
compiled DLL or OCX in any way, eliminating any possibility of build errors or the
chance that your component may be corrupted. SpyWorks 7 extended Dynamic Export
Technology for use with Visual Basic .NET and C#, allowing you to export functions
from DLL assemblies written in either of these languages. Functionality remains
unchanged for SpyWorks 8 except that only the 1.1 framework is currently supported
(support for the 2.0 framework will be available on release).

What are Exported Functions?
Every dynamic link library (DLL) consists of a collection of functions.
Those DLLs that make up Windows contain many hundreds of functions called Windows
API functions (API = Application Programming Interface). You can access those
functions from Visual Basic using the Declare statement or from C# using the DllImport
attribute. In order for a function to be accessible using the Declare statement or DllImport
attribute, it must be "exported" - this means that the name of the function and its location
in the DLL is made public by the DLL.
.NET assemblies expose functions through yet another mechanism, publishing public
objects in the assembly’s manifest. Objects exposed through .NET assemblies are created
and managed by the Common Language Runtime (CLR).
Visual Basic .NET and C# do not allow you to export functions, yet this can be an
important feature. If you can export functions, you can:

• Create your own export function libraries that other applications can access,
whether they are written in previous versions of Visual Basic (in which case you
use the Declare statement), or written in other languages.

• Some operating system features will only work with dynamic link libraries that
export functions. For example, you must be able to export functions to create
control panel extension applets. Also, NT Services (which typically use control
panel applets) benefit from this capability.

• Some services and applications will only work with dynamic link libraries that
export functions. For example: the Internet Service API (ISAPI) requires this
capability.

Exporting functions from a Visual Studio .NET DLL is a two-step process.

1. Add the ExportAttribute template file to your project.
2. Use the ExportWizard to create an alias DLL that loads your DLL and links the

functions.

 - 61 -

But first, we recommend you read a little bit about how Desaware's Dynamic Export
Technology Works.

How Dynamic Export Technology Works
Desaware's Dynamic Export Technology works without modifying your .NET assembly
in any way. This has two advantages:
· It eliminates any chance that Desaware's tools might corrupt your assembly file.
· It eliminates any chance that you might forget a step after recompiling your
component.
The following figure illustrates the operation of the SpyWorks exporting feature.

First, you'll define a Public class called Exports in your .NET project. This class has a
number of methods that will be called by SpyWorks when your assembly loads in order
to find out about the functions that it wants to export.
The real work is done by a separate DLL called an Alias DLL. You use the ExportWizard
utility program to create the Alias DLL. The ExportWizard requires that you specify the
name of your .NET DLL and version resource. The ExportWizard also requires that your
.NET DLL exists before creating the Alias DLL. It then creates the Alias DLL with the
file name that you specify.
As far as other programs or the windows system are concerned, your functions are
exported by the Alias DLL - thus you will specify the Alias DLL as the library to use in
Declare statements or by the system.
But when the other application or the system actually loads the Alias DLL, it will load
your assembly DLL and read the Exported attribute information to obtain the list of

 - 62 -

functions that you wish to export. It will then link those functions in dynamically to be
accessed by the calling application.
From then on, the calling application or system will call the functions in your assembly
directly - completely bypassing the Alias DLL. This approach offers the best
performance possible.
For .NET assemblies, the alias DLL performs the necessary transition from unmanaged
code (called by those using the exported function), and your managed assembly.
However, all incoming calls will be on the caller’s thread. The Alias DLL performs no
synchronization, so if your caller is multithreaded, be sure to synchronize incoming calls
as needed for your particular application.

The Exports Class
The first step in exporting functions from your .NET assembly is to add the
ExportAttribute class file into your project. We've included a VB and C# template file
that you can add to your project. You do not need to make any changes to this file.

Critical first steps: (must be followed exactly as stated):

1. Add a Public Class name Exports to your project (no other name will work).
2. Define Public Shared (VB) or public static (C#) functions in the Exports class for

functions that are to be exported.
3. Add the Exported attribute to these functions, and then define the exported

function name and exported ordinal value in the attribute. The function name is
set to the name under which you want the function exported. This name need not
match the actual name of the function in code. Set the function's ordinal value to
any 16 bit positive number. In most cases the value has no significance, but you
should set them in order, and each ordinal value should be unique. You may also
specify the ‘C’ calling convention for the exported function (the default is the
standard api calling convention).

[VB]
<Exported("MyExportFunc", 1)> Public Shared Function MyExportFunc
(ByVal x As Integer) As Integer
<Exported("MyExport", 2, CCall:=True)> Public Shared Function MyExport
(ByVal x As Integer) As Integer

[C#]
[Exported("MyExportFunc", 1)] public static int MyExportFunc (int x)
[Exported("MyExport", 2, Ccall=True)] public static int MyExport (int
x)

You can add new functions to be exported at any time. You can delete them as well, but
this may break other applications that use your DLL. All you need to do is recompile
your .NET project. You do not need to create a new alias DLL when you make changes
to the functions being exported.

Currently, byval and byref passing of the following function parameter and return data
types are supported:

 - 63 -

 System.Int32
 System.Int16
 System.Byte
 System.IntPtr

The ExportSample project demonstrates how to use the System.Marshal class to pass
other data types (such as strings and structures).

The ExportWizard
The Desaware ExportWizard is used to create the Alias DLL which provides support for
the Dynamic Export Technology under .NET.

Alias DLL File Name Step: This step is used to specify the path and file name of your
alias DLL.

DLL and Assembly Name Step: This step is used to specify the path and file name of
your .NET DLL that includes the function export code. The DLL file’s Assemby Name
will be retrieved for your verification.

Version Resource Step: This step allows you to specify a version resource for the Alias
DLL file. At a minimum, the File Version and Company Name must be specified.

Asssembly Verification Step: This step scans the specified Assembly for the required
declarations, formating errors, and other inconsistencies regarding the Assembly.

Compile Step: This step compiles the specified Alias DLL file.

Once you create an Alias DLL for an assembly, you will never need to change it. You do
not need to create a new Alias DLL when you change the list of functions being exported

 - 64 -

- the Alias DLL creates the export function list dynamically based on the functions
specified by the Exported attribute.

Testing Exported Functions
Functions can only be exported within the process space of an application. This means
that the Alias DLL and your assembly must be running within the same process space as
the calling function.
The Visual Studio IDE allows you to attach an external application to test your .NET
assemblies. Open your Export Function project and compile it in Debug mode. Then set
the Project's Configuration Debugging properties such that it starts an external program
that will call the exported functions from your Export Function assembly. Set breakpoints
in your Export Function project's code and run the project under the Visual Studio IDE.

Distributing your Exported Function files
Distributing the Alias DLL for .NET
You must distribute the Alias DLL with your .NET assembly. Remember that
applications using your assembly must actually refer to the Alias DLL - it will redirect
the exported functions as needed. The Alias DLL must be installed in the same folder as
your assembly or installed in a shared folder.

Warning! Exporting Functions is Dangerous!
When you export a function from a DLL assembly you are providing a function address
which will be called directly by the calling application or the system.
The number of parameters and parameter types of your exported functions must be
correct - in other words, they must match exactly what the calling application is using.
If you get it wrong you will almost certainly trigger a memory exception. There is no
error checking provided by .NET - this is part of the nature of exporting functions.
So double and triple check those declarations!
Be sure that if you are exporting a function (as compared to a subroutine) that you return
the correct data type. Specifying the incorrect data type can also trigger a memory
exception.
.NET assemblies should not throw errors to the caller. The client is most likely not a
.NET application and will not be able to handle the errors. Our framework does forward
any errors thrown to the calling function, however you should assume that the caller
would not handle it and that this will actually result in a memory exception.
It is important that you catch any errors raised in your code. We recommend you return
an error value, and possibly call the SetLastError API function to provide additional error
information to the caller.

Migrating to the Desaware.shcomponent.dll

Introduction

The Desaware.shcomponent.dll component is a native .NET component that exposes
Windows Subclass and Windows Hooks technology previously found in the SpyWorks

 - 65 -

Subclass control and SpyWorks WinHook control. Desaware recommends using the new
Desaware.shcomponent.dll component in place of the previous Subclass and WinHook
COM controls for development on the Visual Studio .NET platform. In order to migrate
to the new component, you will need to make some code changes. Some of these are due
to differences in functionality between the components or simple “cleanup” of properties
and methods – changes not possible in the COM controls due to the need to preserve
backwards compatibility. Other changes are more fundamental – changes in approach
that result from the huge differences between .NET and COM. This section will walk you
through the changes necessary in order to migrate the Subclass or WinHook controls to
the new component, both in terms of code and understanding the key concepts.
Note: To migrate from the SpyWorks 7.1 Desaware.SpyWorksDotNet.Dll component to
the new Desaware.shcomponent.dll component, all you need to do is remove the
reference to one and add a reference to the other. They are functionally equivalent.
Desaware.shcomponent.dll uses the newer dwshengine80.dll subclassing/hook engine.

Fundamental Differences between the
Desaware.shcomponent.dll component and the COM based
subclassing and hook components.
To understand the differences between the COM and .NET components, you need to
remember that the COM controls don’t actually do any subclassing or hooking. Instead,
they work with the dwshengine80.dll subclassing engine.
The dwshengine80.dll is responsible for all actual subclassing and hooking in SpyWorks.
It handles all interprocess communication, and does low level filtering to maximize
performance. More important – by placing these lower level functions in a DLL that has
minimal dependencies, the potential impact of SpyWorks on a system is dramatically
reduced. Instead of trying to map the entire VB6 or .NET runtime into another process
(which happens during hooks or cross task subclassing), only the dwshengine80.dll DLL
is mapped.
The dwshengine80.dll component is a native API DLL – it has no runtime and doesn’t
even use COM internally.
The dwshengine80.dll component replaces the dwspy36.dll component uses in SpyWorks
7.1. It incorporates a more stable hook system that is better able to recover after
application crashes (
The subclassing and hook controls use the dwshengine80 DLL to perform their tasks.
They provide the design time interface and an easy to use programmatic interface
(properties, methods, events) to work with. More important – they are responsible for
guaranteeing that the COM threading rules required by VB6 are followed – that all events
are raised on the thread that belongs to the form on which the control was placed. The
controls also handle posted events – the ability to process events asynchronously by
posting them to the control’s message queue and handling them at a later (safe) time.

The Desaware.shcomponent.dll component
The Desaware.shcomponent.dll component also uses the dwshengine80.dll engine. This
is important, because this preserves all the advantages of this component – the light

 - 66 -

footprint, the efficiency, and the fact that it is a reliable component, proven on millions of
systems worldwide.
However, the entire approach for the client component changes in .NET, because all of
the things that an ActiveX control must do to allow compatibility with VB6, are not
necessary in VB .NET or C#.
The .NET languages are free threaded – thus there is no longer any need to marshal all
events to a particular thread (which has a performance cost). This means that you no
longer need a control at all (since the main reason for using a control was to have a
window to use to implement thread marshaling). Without a window handle, you can’t use
message posting for asynchronous event handling, but that’s ok because .NET has native
asynchronous delegates.
In other words, the Desaware.shcomponent.dll component is designed from scratch based
on the principles of sound .NET programming. It is not an adaptation from the COM
controls.
The key fundamental differences between the COM controls and the .NET component
are as follows:

1. The Desaware.shcomponent.dll component is implemented as a class library
rather than a control. As such, there is no design time behavior – you simply
create an instance of the class and set the properties and methods in your code.

2. Because the Desaware.SpyWorksDotNet component is a class library, it no longer
requires a host form. This allows it to be used from other application types. Note,
however, that in order to function properly the process that is using the
component must have at least one thread that is running a message pump. You
can use the Application object (Application.Run) to create a message pump on a
thread even for non-form based applications such as console application.

3. Events in this control can be raised on any thread. So if you are accessing a form
property, you must use the form’s Invoke method to be sure the property is
accessed on the correct thread. You should also be sure to do thread
synchronization where necessary.

4. When handling messages asynchronously, this component uses asynchronous
delegates – this means that events will be raised on a different thread from the
original message.

While the thread management in some cases may require additional code (compared to
the COM controls), the result is a much more lightweight and efficient component.

Major Changes to the Subclassing Component
In addition to the differences listed previously that apply to all of the SpyWorks
components (subclassing, hooks and keyboard hooks), the following significant
differences apply to the Subclasser component.

• Each Desaware.SpyWorks.Subclasser object can subclass only one window. The
COM based control was designed to subclass multiple windows because each
control carried a very high overhead in terms of system resources (including all of
the ActiveX control overhead and a window handle). Allowing each control to
subclass multiple windows allowed all of the subclassed windows to share those

 - 67 -

resources. The new Subclasser object is a native .NET class with negligible
overhead, so there is no harm in using separate objects to subclass each window.

• In following the common .NET design pattern, messages to be subclassed are
specified using a WindowsMessageList collection object that is accessed via the
Messages property.

• Events use the common .NET design pattern of two parameters for each event:
one the sender, the other an object that derives from EventArg

Major Changes to the Windows hook Component
In addition to the differences listed previously that apply to all of the SpyWorks
components (subclassing, hooks and keyboard hooks), the following significant
differences apply to the WinHook component.

• In following the common .NET design pattern, messages to be detected are
specified using a WindowsMessageList collection object that is accessed via the
Messages property.

• Two new hook types: WH_FOREGROUNDIDLE and WH_MOUSE_LL are
supported with this component.

• Events use the common .NET design pattern of two parameters for each event:
one the sender, the other an object that derives from EventArg

• The Monitor property can no longer specify the ThisForm or MySiblings options
because the component is no longer associated with a form.

Major Changes to the Keyboard hook Component
The Desaware.SpyWorks.Keyhook class derives from the Desaware.SpyWorks.Winhook
class, incorporating additional properties and methods specific to keyboard handling.
In addition to the differences listed previously that apply to all of the SpyWorks
components (subclassing, hooks and keyboard hooks), the following significant
differences apply to the KeyHook component.

• There is no kbdhook event. The OnKeyDown and OnKeyUp events are separate.
• Both regular (WH_KEYBOARD) and low level (WH_KEYBOARD_LL) hooks

are supported.
• In following the common .NET design pattern, keys to be detected are specified

using a KeyList collection object that is accessed via the KeyFilterList property.
• Events use the common .NET design pattern of two parameters for each event:

one the sender, the other an object that derives from EventArg.
• With SpyWorks 8, character keystrokes destined to browser windows and text

boxes with the password style are not detected for processes other than your own.
This is part of the new anti-spyware feature of SpyWorks 8.

Migrating the Subclass control from a .NET project

 - 68 -

1. Write down the design time properties for each of the subclass controls, especially
messages that the control is detecting.

2. Delete all subclass controls from all forms - you may also need to remove a line

of code from the form the control is on similar to:

[VB]
Friend WithEvents SubClass1 As
AxDesaware.SpyWorks.dwsbcNET.AxSubClass

[C#]
private AxDesaware.SpyWorks.dwsbcNET.AxSubClass SubClass1;

The library may be AxDWSBC80Lib if you are migrating from the SpyWorks 8 ActiveX
controls.

3. Remove the project reference to Desaware.SpyWorks.dwsbcNet or
DWSBC80LIB and AxDWSBC80LIB (or DWSBC36LIB if migrating from
SpyWorks 7.1 or earlier).

4. Add a project reference to the new Desaware.shcomponent.dll .NET component.

5. Declare the new Subclass object. In VB .NET, you can use the WithEvents

declaration instead of adding events explicitely.

[VB]
Friend SubClass1 As Desaware.SpyWorks.Subclasser
[C#]
internal Desaware.SpyWorks.Subclasser SubClass1;

6. Add code to create a new instance of the object.

[VB]
SubClass1 = New Desaware.SpyWorks.Subclasser()
[C#]
SubClass1 = new Desaware.SpyWorks.Subclasser();

7. Write code to restore the previous Subclass control’s design time properties after

creating the Subclasser object. Usually, you would just set the Messages,
HwndParam and Type properties for the Subclass control. All three of these
properties have been changed for the new Subclasser object. Refer to the Property
changes section for more information.

[VB]
Imports Desaware.SpyWorks

SubClass1.Messages = New WindowsMessageList()
SubClass1.Messages.AddMessage(StandardMessages.WM_ACTIVATE)
SubClass1.Messages.AddMessage(StandardMessages.WM_INITMENUPOPUP)

SubClass1.SubclassingType = SubclassingTypes.PostDefault

 - 69 -

AddHandler SubClass1.OnWndMessage, AddressOf SubClass1_OnWndMessage

SubClass1.HwndParam = IntPtr.op_Explicit(hwnd)

[C#]
using Desaware.SpyWorks;

SubClass1.Messages = new WindowsMessageList();
SubClass1.Messages.AddMessage(StandardMessages.WM_ACTIVATE);
SubClass1.Messages.AddMessage(StandardMessages.WM_INITMENUPOPUP);

SubClass1.SubclassingType = SubclassingTypes.PostDefault;
SubClass1.OnWndMessage += new
WndMessageEventHandler(SubClass1_OnWndMessage);

SubClass1.HwndParam = (IntPtr)hwnd;

8. Replace your Subclass control’s WndMessage or WndMessageX event with the

OnWndMessage event and move your code to the new event. The
OnWndMessage event is declared as follows:

[VB]
Private Sub SubClass1_OnWndMessage(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.WndMessageEventArgs)
[C#]
private void SubClass1_OnWndMessage(object sender,
Desaware.SpyWorks.WndMessageEventArgs e)

9. The WndMessageEventArgs data type found in the OnWndMessage event is
similar to the
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageEvent and
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageXEvent data
types. The exception is the WndMessageEventArgs.hwnd field that is now an
IntPtr instead of an Integer. The WndMessageEventArgs.process field is set to
zero if the Windows message subclassed is from the process containing the
subclasser object. Otherwise, it contains the process id of the process the
subclassed Windows message was intended for.

10. Remove the OnWndMessage event handler when done using the subclass object.

[VB]
RemoveHandler SubClass1.OnWndMessage, AddressOf SubClass1_OnWndMessage
[C#]
SubClass1.OnWndMessage -= new
WndMessageEventHandler(SubClass1_OnWndMessage);

Property changes:

AddHwnd Obsolete. Each instance of the Subclasser object can only

subclass a single window.

 - 70 -

ClearMessage Obsolete. Use the Messages.RemoveMessage method to

remove a Windows message from the list of messages being
subclassed.

CtlParam Obsolete. Use the HwndParam property to assign the window to
subclass at run time.

HookCount Obsolete. Each instance of the Subclasser object can only
subclass a single window.

HookEnabled Replaced by the Enabled property.

HwndArray Obsolete. Each instance of the Subclasser object can only
subclass a single window.

HwndParam Changed from an Integer data type to an IntPtr data type. You
can use the IntPtr.op_Explicit function to cast an Integer data
type to an IntPtr data type.

MessageArray Obsolete. Use the Messages.Messages property to retrieve an
array of the messages being subclassed.

MessageCount Obsolete. Use the Messages.Messages.Length property to
retrieve the number of messages being subclassed.

Messages The data type for this property has changed. It use to be such
that you were able to assign a messages by setting the Messages
in design time or at run time by setting the Messages property to
a message number. Now Messages refer to a
WindowsMessageList data type (an arraylist). This property is
initially set to Nothing which will subclass all Windows
messages. Most Windows messages are also exposed through
one of the Desaware.SpyWorks.*Messages enumerator.

Persist Obsolete.

PostEvent Obsolete. Use an asynchronous delegate if you need to defer an
operation.

PostOnFreeze Obsolete. Events are never “frozen”

PostOnFreezeMax Obsolete.

RegMessage Obsolete. Use the GetRegisteredWindowMessage property to
retrieve a unique Windows message number on the current

 - 71 -

system for the specified string. Then use the
Messages.AddMessage to include the message for subclassing.

RegMessageNum Obsolete. Use the GetRegisteredWindowMessage property to
retrieve a unique Windows message number on the current
system for the specified string.

RemoveHwnd Obsolete. Each instance of the Subclasser object can only
subclass a single window.

StyleChangeArray Obsolete.

Type Replaced by the SubclassingType, set this to a value exposed by
the Desaware.SpyWorks.SubclassingTypes enumerator.

UseDirectInterface Obsolete.

UseOnlyXEvent Obsolete.

Method changes:

GetAnsiString The address parameter is now an IntPtr data type instead of an

Integer data type.

GetUnicodeString The address parameter is now an IntPtr data type instead of an
Integer data type.

StyleChangeOn Obsolete.

Event changes:

WndMessage Replaced by the OnWndMessage event. This event’s

AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageEvent
type is replaced by the WndMessageEventArgs type that exposes the same
fields. The exception is the hwnd field that is now an IntPtr type instead of
an Integer type.

WndMessageX Replaced by the OnWndMessage event. This event’s
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageXEvent
type is replaced by the WndMessageEventArgs type that exposes the same
fields. The exception is the hwnd field that is now an IntPtr type instead of

 - 72 -

an Integer type.

Migrating the WinHook control from a .NET project – Windows
hook migration

1. Write down the design time properties for each of the winhook controls,
especially keys that the control is detecting.

2. Delete all winhook controls from all forms - you may also need to remove a line

of code from the form the control is on similar to:

[VB]
Friend WithEvents WinHook1 As AxDesaware.SpyWorks.dwshkNET.AxWinHook

[C#]
private AxDesaware.SpyWorks.dwshkNET.AxWinHook WinHook1;

The library may be AxDWSHK80Lib if you are migrating from the SpyWorks 8 ActiveX
controls.

3. Remove the project reference to Desaware.SpyWorks.dwshkNet or
DWSHK80LIB and AxDWSHK80LIB (or DWSBC36LIB if migrating from
SpyWorks 7.1 or earlier).

4. Add a project reference to the new Desaware.shcomponent.dll .NET component.

5. Declare the new WinHook object as follows. In VB .NET, you can use the

WithEvents declaration instead of adding events explicitely.

[VB]
Friend WinHook1 As Desaware.SpyWorks.WinHook
[C#]
internal Desaware.SpyWorks.WinHook WinHook1;

6. Add code to create a new instance of the object.

[VB]
WinHook1 = New Desaware.SpyWorks.WinHook()
[C#]
WinHook1 = new Desaware.SpyWorks.WinHook();

7. Write code to restore the previous WinHook control’s design time properties after

creating the WinHook object. Usually, you would just set the Messages, Monitor,
HookType and HookEnabled properties for the WinHook control. Some of these
properties have changed for the new WinHook object. Refer to the Property
changes section for more information.

 - 73 -

[VB]
Imports Desaware.SpyWorks

WinHook1.Messages = New WindowsMessageList()
WinHook1.Messages.AddMessage(MouseMessages.WM_LBUTTONDBLCLK)

WinHook1.Monitor = HookMonitor.EntireSystem
WinHook1.HookType = HookTypes.Mouse
AddHandler WinHook1.OnMouseHook, AddressOf WinHook1_ OnMouseHook

WinHook1.Enabled = True

[C#]
using Desaware.SpyWorks;

WinHook1.Messages = new WindowsMessageList();
WinHook1.Messages.AddMessage(MouseMessages.WM_LBUTTONDBLCLK);

WinHook1.Monitor = HookMonitor.EntireSystem;
WinHook1.HookType = HookTypes.Mouse;
WinHook1.OnMouseHook += new
MouseHookEventHandler(WinHook1_OnMouseHook);
WinHook1.Enabled = true;

8. Replace your WinHook control’s event with the corresponding event and move

your code to the new event. The new events are described in the Event changes
section. For the sample code above, the OnMouseHook event is as follows:

[VB]
Private Sub WinHook1_OnMouseHook(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.MouseHookEventArgs)

[C#]
private void WinHook1_OnMouseHook(object sender,
Desaware.SpyWorks.MouseHookEventArgs e)

9. Refer to the Events changes section for a detail list of the differences of parameter
types for each individual event.

10. Remove the event handler when done using the winhook object.

[VB]
RemoveHandler WinHook1.OnMouseHook, AddressOf WinHook1_OnMouseHook
[C#]
WinHook1.OnMouseHook -= new
MouseHookEventHandler(WinHook1_OnMouseHook);

Property changes:

ClearMessage Obsolete. Use the Messages.RemoveMessage method to

 - 74 -

remove a Windows message from the list of messages being
hooked.

CurrentProcessFlag

Obsolete. Use MessageHookEventArgs.process to determine if
the message was intercepted from another process or not when
the HookType is set to CallWndProc or CallWndProcRet. Use
MessageHookEventArgs.handling to determine if the message
was actually removed from the queue, or just peeked without
removal when the HookType is set to GetMessage.

HookEnabled Replaced by the Enabled property.

HookType

Changed from the
Desaware.SpyWorks.dwshkNET.HookTypeConstants date type
to the Desaware.SpyWorks.HookTypes data type. The
Desaware.SpyWorks.HookTypes includes 4 new hook types:

Desaware.SpyWorks.HookTypes.ForegroundIdle,
Desaware.SpyWorks.HookTypes.Keyboard,
Desaware.SpyWorks.HookTypes.KeyboardLL, and
Desaware.SpyWorks.HookTypes.MouseLL.
(The keyboard hook types can only be set in the KeyHook
component that derives from the WinHook component).

HwndParam Changed from an Integer data type to an IntPtr data type. You
can use the IntPtr.op_Explicit function to cast an Integer data
type to an IntPtr data type, or create a new IntPtr object with an
integer as the constructor parameter.

MessageArray Obsolete. Use the Messages.Messages property to retrieve an
array of the messages being hooked.

MessageCount Obsolete. Use the Messages.Messages.Length property to
retrieve the number of messages being hooked.

Messages The data type for this property has changed. It use to be such
that you were able to assign a messages by setting the Messages
in design time or at run time by setting the Messages property to
a message number. Now Messages refer to a
WindowsMessageList data type (an arraylist). This property is
initially set to Nothing which will hook all Windows messages.
Most Windows messages are also exposed through one of the
Desaware.SpyWorks.*Messages enumerator.

Monitor Changed from the
Desaware.SpyWorks.dwshkNET.MonitorConstants data type to

 - 75 -

the Desaware.SpyWorks.WinHook.Monitor data type. The
Desaware.SpyWorks.WinHook.Monitor enumerator does not
support the MySiblings and ThisForm constants anymore (since
the component is no longer associated with a particular form).

Notify Replaced with AsyncNotification. Refer to the Fundamental
Differences section early in this document for information on
regarding threading changes for the Windows Hook object.

PostEvent Obsolete. Use an asynchronous delegate if you need to defer an
operation.

PostOnFreeze Obsolete. Events are never “frozen”

PostOnFreezeMax Obsolete.

RegMessage Obsolete. Use the GetRegisteredWindowMessage property to
retrieve a unique Windows message number on the current
system for the specified string. Then use the
Messages.AddMessage to include the message to hook.

RegMessageNum Obsolete. Use the GetRegisteredWindowMessage property to
retrieve a unique Windows message number on the current
system for the specified string.

TaskParam Replaced by ProcessParam.

UseDirectInterface Obsolete.

Event changes:

CBTProc

Replaced by the OnCBTHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_CBTProcEvent type is
replaced by the CBTHookEventArgs type that exposes similar fields. The lp
and wp fields are now lParam and wParam respectively. The code field is now
a CBTMessageType enumerator type.

DelayedEvent

Obsolete.

JournalPlayProc

Replaced by the OnJournalPlaybackHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_JournalPlayProcEvent
type is replaced by the JournalPlaybackHookEventArgs type that exposes the
same fields. The exception is the wnd field that is now an IntPtr type instead of

 - 76 -

an Integer type and the code field is now a JournalMessageType enumerator
type.

JournalRecordProc

Replaced by the OnJournalRecordHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_JournalRecordProcEvent
type is replaced by the JournalRecordHookEventArgs type that exposes the
same fields. The exception is the wnd field that is now an IntPtr type instead of
an Integer type and the code field is now a JournalMessageType enumerator
type.

MessageProc

Replaced by the OnMessageHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MessageProcEvent type
is replaced by the MessageHookEventArgs type that exposes similar fields. The
wnd field has been replaced by the hwnd field and is now an IntPtr type instead
of an Integer type. The src field has been replaced by the source field and is
now a MessageInputSource enumerator type.

MouseProc

Replaced by the OnMouseHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MouseProcEvent type is
replaced by the MouseHookEventArgs type that exposes similar fields. The
wnd field has been replaced by the hwnd field and is now an IntPtr type instead
of an Integer type. The peek field has been replaced by the handling field and is
now a MessageHandling enumerator type.

ShellProc

Replaced by the OnShellHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_ShellProcEvent type is
replaced by the ShellHookEventArgs type that exposes similar fields. The lp
and wp fields are now lParam and wParam respectively. The code field is now
a ShellMessageType enumerator type.

WndMessage

Replaced by the OnMessageHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_WndMessageEvent type
is replaced by the MessageHookEventArgs type that exposes similar fields. The
wnd field has been replaced by the hwnd field and is now an IntPtr type instead
of an Integer type.

WndMessageRet

Replaced by the OnMessageHook event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_WndMessageRetEvent
type is replaced by the MessageHookEventArgs type that exposes similar
fields. The wnd field has been replaced by the hwnd field and is now an IntPtr
type instead of an Integer type.

 - 77 -

Migrating the WinHook control from a .NET project – KeyBoard
hook migration

1. Write down the design time properties for each of the winhook controls,
especially keys that the control is detecting.

2. Delete all winhook controls from all forms - you may also need to remove a line

of code from the form the control is on similar to:

[VB]
Friend WithEvents WinHook1 As AxDesaware.SpyWorks.dwshkNET.AxWinHook

[C#]
private AxDesaware.SpyWorks.dwshkNET.AxWinHook WinHook1;

The library may be AxDWSHK80Lib if you are migrating from the SpyWorks 8 ActiveX
controls.

3. Remove the project reference to Desaware.SpyWorks.dwshkNet or
DWSHK80LIB and AxDWSHK80LIB (or DWSBC36LIB if migrating from
SpyWorks 7.1 or earlier).

4. Add a project reference to the new Desaware.shcomponent.dll .NET component.

5. Declare the new WinHook object. In VB .NET, you can use the WithEvents

declaration instead of adding events explicitely.

[VB]
Friend KeyHook1 As Desaware.SpyWorks.KeyHook
[C#]
internal Desaware.SpyWorks.KeyHook KeyHook1;

6. Add code to create a new instance of the object.

[VB]
KeyHook1 = New Desaware.SpyWorks.KeyHook()
[C#]
KeyHook1 = new Desaware.SpyWorks.KeyHook();

7. Write code to restore the previous WinHook control’s design time properties after

creating the KeyHook object. Usually, you would just set the Keys and
KeyboardHook properties for the WinHook control. These properties have been
changed for the new KeyHook object. Refer to the Property changes section for
more information.

[VB]
Imports Desaware.SpyWorks

KeyHook1.HookType = HookTypes.Keyboard

 - 78 -

KeyHook1.Monitor = HookMonitor.EntireSystem
KeyHook1.KeyFilterList = New KeyList()
' Add the Del and Enter keys to be detected
KeyHook1.KeyFilterList.AddKey(VirtualKeys.VK_Delete, KeyFlags.None)
KeyHook1.KeyFilterList.AddKey(VirtualKeys.VK_Enter, KeyFlags.None)
AddHandler KeyHook1.OnKeyDown, AddressOf KeyHook1_OnKeyDown

KeyHook1.Enabled = True

[C#]
using Desaware.SpyWorks;

KeyHook1.HookType = HookTypes.Keyboard;
KeyHook1.Monitor = HookMonitor.EntireSystem;
KeyHook1.KeyFilterList = new KeyList();
// Add the Del and Enter keys to be detected
KeyHook1.KeyFilterList.AddKey(VirtualKeys.VK_Delete, KeyFlags.None)
KeyHook1.KeyFilterList.AddKey(VirtualKeys.VK_Enter, KeyFlags.None)
// add event handler
KeyHook1.OnKeyDown += new
KeyDownHookEventHandler(KeyHook1_OnKeyDown);
KeyHook1.Enabled = true;

8. Replace your WinHook control’s KeyDownHook or KeyUpHook event with the

OnKeyDown or OnKeyUp event and move your code to the new event. These
events are declared as follows:

[VB]
Private Sub KeyHook1_OnKeyDown(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.KeyboardHookEventArgs)

Private Sub KeyHook1_OnKeyUp(ByVal sender As Object, ByVal e As
Desaware.SpyWorks.KeyboardHookEventArgs)

[C#]
private void KeyHook1_OnKeyDown(object sender,
Desaware.SpyWorks.KeyboardHookEventArgs e)

private void KeyHook1_OnKeyUp(object sender,
Desaware.SpyWorks.KeyboardHookEventArgs e)

9. The KeyboardHookEventArgs data type found in the OnKeyDown/OnKeyUp
events is similar to the
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyDownHookEvent and
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyUpHookEvent data
types. The exception is the KeyboardHookEventArgs.discard field that is now a
Boolean instead of a Short (16 bit integer).

10. Remove the OnKeyDown or OnKeyUp event handlers when done using the

keyhook object.

[VB]
RemoveHandler KeyHook1.OnKeyDown, AddressOf KeyHook1_OnKeyDown
RemoveHandler KeyHook1.OnKeyUp, AddressOf KeyHook1_OnKeyUp

 - 79 -

[C#]
KeyHook1.OnKeyDown -= new KeyDownHookEventHandler(KeyHook1_OnKeyDown);
KeyHook1.OnKeyUp -= new KeyUpHookEventHandler(KeyHook1_OnKeyUp);

Property changes:
(Note: This class inherits from the WinHook class, and thus supports additional methods
and properties via inheritance)

ClearKey Obsolete. Use the KeyFilterList.RemoveKey method to remove

a key from the list of keys being hooked.

KeyArray

Obsolete. Use the KeyFilterList.Keys property to retrieve an
array of the keys being hooked.

KeyboardEvent

Obsolete. The old KbdHook style is no longer supported, use
the KeyDown and KeyUp events instead.

KeyboardHook

Obsolete. Use the Monitor property to specify the scope of the
keyboard hook and the Enabled property to turn the hook on
and off.

KeyboardNotify

Obsolete. Use the AsyncNotification property to specify
whether the KeyHook should trigger an event when the key is
detected or trigger an event asynchronously at a later time.

KeyCount

Obsolete. Use the KeyFilterList.Count property to retrieve the
number of keys being hooked.

KeyIgnoreCapsLock

Obsolete.

Keys

Use the KeyFilterList.AddKey method to dynamically add a
new key to be hooked.

KeyViewPeeked

Replaced by the ViewPeeked property.

TaskParam

Replaced by the ProcessParam property.

Event changes:

KbdHook

Obsolete. The old KbdHook style is no longer supported, use the
OnKeyDown and OnKeyUp events instead.

 - 80 -

KeyDownHook

Replaced by the OnKeyDown event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyDownHookEvent
type is replaced by the KeyboardHookEventArgs type that exposes the same
fields. The exception is the discard field that is now a Boolean type instead
of a Short type. The KeyboardHookEventArgs also exposes some new
functions to return information from the keycode field.

KeyUpHook

Replaced by the OnKeyUp event. This event’s
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyUpHookEvent
type is replaced by the KeyboardHookEventArgs type that exposes the same
fields. The exception is the discard field that is now a Boolean type instead
of a Short type. The KeyboardHookEventArgs also exposes some new
functions to return information from the keycode field.

Desaware.shcomponent.dll Reference

Introduction

The Desaware.shcomponent.dll component is a native .NET component that exposes
Windows Subclass and Windows Hooks technology previously found in the SpyWorks
Subclass control and SpyWorks WinHook control. Desaware recommends using the new
Desaware.shcomponent.dll component in place of the previous Subclass and WinHook
COM controls for development on the Visual Studio .NET platform.

The following is detailed reference information for the Desaware.shcomponent.dll
classes. Properties and methods of base classes are not listed unless they are overridden.
Note on thread safety:
Unless otherwise noted, as is common in the .NET framework, static methods of objects
are thread safe. Instance methods are not.
Events are generally not thread safe (i.e. they can be raised on any thread). Events raised
when asynchronous notification is requested are raised on a thread from the .NET thread
pool, and are not synchronized to any window or other thread (this is standard .NET
framework behavior). If you access form or control properties from event handling code,
be sure to use the Control class InvokeRequired property to determine if you must use the
InvokeMember method to access the control property.

Desaware.SpyWorks Enumerators

CBTMessageType Used by the code field of the CBTHookEventArgs object.

Describes the type of code that triggered an OnCBTHook event.
Refer to your Windows API documentation for the CBTProc

 - 81 -

function for information on these fields.

Activate - 5
ClickSkipped - 6
CreateWnd - 3
DestroyWnd - 4
KeySkipped - 7
MixMax - 1
MoveSize - 0
QueueSync - 2
SetFocus - 9
SysCommand - 8

HookMonitor Used by the WinHook object’s Monitor property. Refer to the
Monitor property for detailed information on these fields.

EntireSystem - 4
HwndAndChildren - 6
HwndParam - 5
ProcessParam - 3
ThisProcess - 2
ThisThread - 0
ThreadParam - 1

HookTypes Used by the WinHook and KeyHook objects HookType
property. Refer to the HookType property for these objects for
detailed information on these fields.

CallWndProc - 4
CallWndProcRet - 9
CBT - 5
ForegroundIdle - 13
GetMessage – 0
JournalPlayback - 7
JournalRecord - 6
Keyboard – 10
KeyboardLL - 11
MessageFilter - 2
Mouse – 1
MouseLL - 12
Shell - 8
SysMessageFilter - 3

JournalMessageType Used by the code field of the JournalPlaybackHookEventArgs
and JournalRecordHookEventArgs objects. Describes the type
of code that triggered an OnJournalPlaybackHook or

 - 82 -

OnJournalRecordHook event. Refer to your Windows API
documentation for the JournalPlaybackProc or
JournalRecordProc function for information on these fields.

Action - 0
GetNext - 1
NoRemove - 3
Skip - 2
SysModalOff - 5
SysModalOn - 4

KeyboardHookType Used by the code field of the KeyboardHookEventArgs object.
Describes the type of code that triggered an OnKeyDown or
OnKeyUp event. Action refers to a normal keystroke message
event. NoRemove indicates that the keystroke message has not
been removed from the message queue. (An application called
the PeekMessage function, specifying the PM_NOREMOVE
flag.) For most cases, you can just ignore this event if
NoRemove is set.

Action - 0
NoRemove - 3

KeyFlags Used by the KeyList object to specify modifier keys. The values
of these modifier keys correspond to their Windows API values.

Alt – 262144 (hex 40000)
Ctrl – 131072 (hex 20000)
None - 0
Shift – 65536 (hex 10000)

MessageHandling Used by the handling field of the MessageHookEventArgs
object. Describes the type of code that triggered an
OnMessageHook event. Remove refers to a normal windows
message event. NoRemove indicates that the windows message
has not been removed from the message queue. (An application
called the PeekMessage function, specifying the
PM_NOREMOVE flag.) For most cases, you can just ignore
this event if NoRemove is set.

NoRemove - 0
Remove - 1

MessageInputSource Used by the source field of the MessageHookEventArgs object.
Describes the type of input event that generated the windows
message when the WinHook object’s HookType property is set

 - 83 -

to MessageFilter or SysMessageFilter. The values of these
fields correspond to their Windows API values.

DDE – 32769 (hex 8001)
Dialog - 0
Menu - 2
Scrollbar - 5

ShellMessageType Used by the code field of the ShellHookEventArgs object.
Describes the type of code that triggered an OnShellHook
event. Refer to your Windows API documentation for the
ShellProc function for information on these fields.

AccessibilityState - 11
ActivateShellWindow - 3
AppCommand - 12
GetMinRect - 5
Language - 8
Redraw - 6
TaskMan - 7
WindowActivated - 4
WindowCreated - 1
WindowDestroyed - 2
WindowReplaced - 13

SubclassingTypes Used by the SubclassingType property of the Subclasser object.
Refer to the SubclassingType property for more detailed
information on these fields.

Asynchronous - 2
PostDefault - 1
PreDefault - 0

Desaware.SpyWorks Minor Classes
These classes are mainly used to expose corresponding Windows API structures or
constants. The Keys and Messages fields correspond to their respective Windows API
values.

ButtonControlMessages Refer to your Windows API documentation on these

messages for information on these fields.

BM_GETCHECK – 240
BM_GETSTATE – 242
BM_SETCHECK – 241
BM_SETSTATE – 243

 - 84 -

BM_SETSTYLE – 244

CBTActivateStruct Contains window activation information for a
CBTHook.

fMouse – Boolean – True if the window is activated
due to a mouse click.
hWndActivate – IntPtr – Window handle of the active
window.

CBTCreateStruct Contains window creation information for a
CBTHook. Refer to your Windows API
documentation on CBT_CREATEWND for
information on these fields.

cx - Integer
cy - Integer
dwExStyle - Integer
hInstance - Integer
hMenu - Integer
hWndAfter - IntPtr
hwndParent - IntPtr
lpCreateParams - Integer
lpszClass - String
lpszName - String
style - Integer
x - Integer
y - Integer

CBTHookEventArgs Contains the parameters relevant to the OnCBTHook
event. Refer to the OnCBTHook event for an
explanation of each field.

ActivateStruct - CBTActivateStruct
BlockCBTOperation - Boolean
code - CBTMessageType
CreateWndStruct - CBTCreateStruct
lParam - Integer
MouseHookStruct - CBTMouseHookStruct
MoveSizeRect - Rectangle
nodef - Short
wParam - Integer

CBTMouseHookStruct Contains mouse information for a CBTHook. Refer to
your Windows API documentation on
MOUSEHOOKSTRUCT for information on these

 - 85 -

fields.

ExtraInfo - Integer
HitTestCode - Integer
hWnd - IntPtr
pt - Point

ClipboardMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_ASKCBFORMATNAME - 780
WM_CHANGECBCHAIN - 781
WM_CLEAR - 771
WM_COPY - 769
WM_CUT - 768
WM_DESTROYCLIPBOARD - 775
WM_DRAWCLIPBOARD - 776
WM_HSCROLLCLIPBOARD - 782
WM_PAINTCLIPBOARD - 777
WM_PASTE - 770
WM_RENDERALLFORMATS - 774
WM_RENDERFORMAT - 773
WM_SIZECLIPBOARD - 779
WM_UNDO - 772
WM_VSCROLLCLIPBOARD - 778

ComboboxControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

CB_ADDSTRING - 323
CB_DELETESTRING - 324
CB_DIR - 325
CB_FINDSTRING - 332
CB_FINDSTRINGEXACT - 344
CB_GETCOUNT - 326
CB_GETCURSEL - 327
CB_GETDROPPEDCONTROLRECT - 338
CB_GETDROPPEDSTATE - 343
CB_GETEDITSEL - 320
CB_GETEXTENDEDUI - 342
CB_GETITEMDATA - 336
CB_GETITEMHEIGHT - 340
CB_GETLBTEXT - 328
CB_GETLBTEXTLEN - 329
CB_GETLOCALE - 346
CB_INSERTSTRING - 330

 - 86 -

CB_LIMITTEXT - 321
CB_RESETCONTENT - 331
CB_SELECTSTRING - 333
CB_SETCURSEL - 334
CB_SETEDITSEL - 322
CB_SETEXTENDEDUI - 341
CB_SETITEMDATA - 337
CB_SETITEMHEIGHT - 339
CB_SETLOCALE - 345
CB_SHOWDROPDOWN - 335

CtlColorMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_CTLCOLOR - 25
WM_CTLCOLORBTN - 309
WM_CTLCOLORDLG - 310
WM_CTLCOLOREDIT - 307
WM_CTLCOLORLISTBOX - 308
WM_CTLCOLORMSGBOX - 306
WM_CTLCOLORSCROLLBAR - 311
WM_CTLCOLORSTATIC - 312

DDEMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_DDE_ACK - 996
WM_DDE_ADVISE - 994
WM_DDE_DATA - 997
WM_DDE_EXECUTE - 1000
WM_DDE_INITIATE - 992
WM_DDE_POKE - 999
WM_DDE_REQUEST - 998
WM_DDE_TERMINATE - 993
WM_DDE_UNADVISE - 995

EditControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

EM_CANUNDO - 198
EM_EMPTYUNDOBUFFER - 205
EM_FMTLINES - 200
EM_GETFIRSTVISIBLELINE - 206
EM_GETHANDLE - 189
EM_GETLINE - 196
EM_GETLINECOUNT - 186

 - 87 -

EM_GETMODIFY - 184
EM_GETPASSWORDCHAR - 210
EM_GETRECT - 178
EM_GETSEL - 176
EM_GETTHUMB - 190
EM_GETWORDBREAKPROC - 209
EM_LIMITTEXT - 197
EM_LINEFROMCHAR - 201
EM_LINEINDEX - 187
EM_LINELENGTH - 193
EM_LINESCROLL - 182
EM_REPLACESEL - 194
EM_SCROLL - 181
EM_SCROLLCARET - 183
EM_SETHANDLE - 188
EM_SETMODIFY - 185
EM_SETPASSWORDCHAR - 204
EM_SETREADONLY - 207
EM_SETRECT - 179
EM_SETRECTNP - 180
EM_SETSEL - 177
EM_SETTABSTOPS - 203
EM_SETWORDBREAKPROC - 208
EM_UNDO - 199

FileManagerMessages Refer to your Windows API documentation on these
messages for information on these fields.

FM_GETDRIVEINFO - 1537
FM_GETFILESEL - 1540
FM_GETFILESELLFN - 1541
FM_GETFOCUS - 1536
FM_GETSELCOUNT - 1538
FM_GETSELCOUNTLFN - 1539
FM_REFRESH_WINDOWS - 1542
FM_RELOAD_EXTENSIONS - 1543

ForegroundIdleHookEventArgs Contains the parameters relevant to the
OnForegroundIdleHook event. Refer to the
OnForegroundIdleHook event for an explanation of
each field.

nodef - Short

FunctionKeys Function_F1 (value = 112) to Function_F24 (value =
135)

 - 88 -

JournalPlaybackHookEventArgs Contains the parameters relevant to the

OnJournalPlaybackHook event. Refer to the
OnJournalPlaybackHook event for an explanation of
each field.

code - JournalMessageType
delay - Integer
msg - Integer
mtime - Integer
paramH - Integer
paramL - Integer
wnd - IntPtr

JournalRecordHookEventArgs Contains the parameters relevant to the
OnJournalRecordHook event. Refer to the
OnJournalRecordHook event for an explanation of
each field.

code - JournalMessageType
msg - Integer
mtime - Integer
nodef - Short
paramH - Integer
paramL - Integer
wnd - IntPtr

KeyboardHookEventArgs Contains the parameters and helper methods relevant
to the OnKeyDown or OnKeyUp events. Refer to the
OnKeyDown or OnKeyUp events for an explanation
of each field.

Function GetScanCode() As Integer
Function IsAltPressed() As Boolean
Function IsExtended() As Boolean
Function IsKeyRelease() As Boolean
Function IsPreviouslyPressed() As Boolean
code - KeyboardHookType
discard - Boolean
keycode - Integer
keystate - Short
processId - Integer
repetitions - Short
shiftstate - Short

KeyboardLLHookEventArgs Contains the parameters and helper methods relevant

 - 89 -

to the OnKeyDownLL or OnKeyUpLL events. Refer
to the OnKeyDownLL or OnKeyUpLL events for an
explanation of each field.

Function GetScanCode() As Integer
Function IsAltPressed() As Boolean
Function IsExtended() As Boolean
Function IsInjected() As Boolean
Function IsKeyRelease() As Boolean
discard - Boolean
ExtraInfo - Integer
flags - Integer
message - Integer
processId - Integer
scancode - Integer
shiftstate - Short
time - Integer
vkCode - Integer

KeyboardMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_CHAR - 258
WM_DEADCHAR - 259
WM_KEYDOWN - 256
WM_KEYUP - 257
WM_SYSCHAR - 262
WM_SYSDEADCHAR - 263
WM_SYSKEYDOWN - 260
WM_SYSKEYUP - 261

KeyDefinitions Base class from which the *Keys classes inherit from,
you will not need to use this class directly.

KeyList Used by the KeyHook object’s KeyFilterList property
to hold a list of keys to detect. If the KeyFilterList
property is not set, or is set to an instance of this class
that does not contain any keys, the KeyHook object
will detect all keys.

AddKey – Adds the key specified in keyvalue to the
list of keys to detect. The flags parameter specifies
modifier keys for the key to add.
[VB] Sub AddKey(ByVal keyvalue As Integer,
ByVal flags As Desaware.SpyWorks.KeyFlags)
[C#] void AddKey(int keyvalue,
Desaware.SpyWorks.KeyFlags flags)

 - 90 -

Contains – Returns whether this key list contains the
key specified in keyfilter. The keyfilter parameter is a
32 bit value that contains the virtual key code in the
lower 16 bits and the key modifier (KeyFlags) in the
upper 16 bits.
[VB] Function Contains(ByVal keyfilter As
Integer) As Boolean
[C#] bool Contains(int keyfilter)

Count – Returns the number of keys being detected. A
0 value indicates that all keys will be detected.
[VB] Function Count() As Integer
[C#] int Count()

Keys – Returns an integer array containing the values
of the keys being detected. Each value in the array is a
32 bit value that contains the virtual key code in the
lower 16 bits and the key modifier (KeyFlags) in the
upper 16 bits.
[VB] Function Keys() As Integer()
[C#] int() Keys()

RemoveKey – Removes the key specified in keyvalue
from the list of keys to detect. The flags parameter
specifies modifier keys for the key to remove.
[VB] Sub RemoveKey(ByVal keyvalue As
Integer, ByVal flags As
Desaware.SpyWorks.KeyFlags)
[C#] void RemoveKey(int keyvalue,
Desaware.SpyWorks.KeyFlags flags)

LetterKeys LTR_0 (value = 48) to LTR_9 (value = 57) and
LTR_A (value = 65) to LTR_Z (value = 90)

ListboxControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

LB_ADDFILE - 406
LB_ADDSTRING - 384
LB_DELETESTRING - 386
LB_DIR - 397
LB_FINDSTRING - 399
LB_FINDSTRINGEXACT - 418
LB_GETANCHORINDEX - 413
LB_GETCARETINDEX - 415
LB_GETCOUNT - 395
LB_GETCURSEL - 392

 - 91 -

LB_GETHORIZONTALEXTENT - 403
LB_GETITEMDATA - 409
LB_GETITEMHEIGHT - 417
LB_GETITEMRECT - 408
LB_GETLOCALE - 422
LB_GETSEL - 391
LB_GETSELCOUNT - 400
LB_GETSELITEMS - 401
LB_GETTEXT - 393
LB_GETTEXTLEN - 394
LB_GETTOPINDEX - 398
LB_INSERTSTRING - 385
LB_RESETCONTENT - 388
LB_SELECTSTRING - 396
LB_SELITEMRANGE - 411
LB_SELITEMRANGEEX - 387
LB_SETANCHORINDEX - 412
LB_SETCARETINDEX - 414
LB_SETCOLUMNWIDTH - 405
LB_SETCOUNT - 433
LB_SETCURSEL - 390
LB_SETHORIZONTALEXTENT - 404
LB_SETITEMDATA - 410
LB_SETITEMHEIGHT - 416
LB_SETLOCALE - 421
LB_SETSEL - 389
LB_SETTABSTOPS - 402
LB_SETTOPINDEX - 407

ListviewControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

LVM_APPROXIMATEVIEWRECT - 4160
LVM_ARRANGE - 4118
LVM_CREATEDRAGIMAGE - 4129
LVM_DELETEALLITEMS - 4105
LVM_DELETECOLUMN - 4124
LVM_DELETEITEM - 4104
LVM_EDITLABEL - 4119
LVM_ENSUREVISIBLE - 4115
LVM_FINDITEM - 4109
LVM_FIRST - 4096
LVM_GETBKCOLOR - 4096
LVM_GETBKIMAGE - 4165
LVM_GETCALLBACKMASK - 4106
LVM_GETCOLUMN - 4121

 - 92 -

LVM_GETCOLUMNORDERARRAY - 4155
LVM_GETCOLUMNWIDTH - 4125
LVM_GETCOUNTPERPAGE - 4136
LVM_GETEDITCONTROL - 4120
LVM_GETEXTENDEDLISTVIEWSTYLE - 4151
LVM_GETHEADER - 4127
LVM_GETHOTCURSOR - 4159
LVM_GETHOTITEM - 4157
LVM_GETHOVERTIME - 4168
LVM_GETIMAGELIST - 4098
LVM_GETISEARCHSTRING - 4148
LVM_GETITEM - 4101
LVM_GETITEMCOUNT - 4100
LVM_GETITEMPOSITION - 4112
LVM_GETITEMRECT - 4110
LVM_GETITEMSPACING - 4147
LVM_GETITEMSTATE - 4140
LVM_GETITEMTEXT - 4141
LVM_GETNEXTITEM - 4108
LVM_GETNUMBEROFWORKAREAS - 4169
LVM_GETORIGIN - 4137
LVM_GETSELECTEDCOUNT - 4146
LVM_GETSELECTIONMARK - 4162
LVM_GETSTRINGWIDTH - 4113
LVM_GETSUBITEMRECT - 4152
LVM_GETTEXTBKCOLOR - 4133
LVM_GETTEXTCOLOR - 4131
LVM_GETTOOLTIPS - 4174
LVM_GETTOPINDEX - 4135
LVM_GETUNICODEFORMAT - 8198
LVM_GETVIEWRECT - 4130
LVM_GETWORKAREAS - 4166
LVM_HITTEST - 4114
LVM_INSERTCOLUMN - 4123
LVM_INSERTITEM - 4103
LVM_REDRAWITEMS - 4117
LVM_SCROLL - 4116
LVM_SETBKCOLOR - 4097
LVM_SETBKIMAGE - 4164
LVM_SETCALLBACKMASK - 4107
LVM_SETCOLUMN - 4122
LVM_SETCOLUMNORDERARRAY - 4154
LVM_SETCOLUMNWIDTH - 4126
LVM_SETEXTENDEDLISTVIEWSTYLE - 4150
LVM_SETHOTCURSOR - 4158
LVM_SETHOTITEM - 4156

 - 93 -

LVM_SETHOVERTIME - 4167
LVM_SETICONSPACING - 4149
LVM_SETIMAGELIST - 4099
LVM_SETITEM - 4102
LVM_SETITEMCOUNT - 4143
LVM_SETITEMPOSITION - 4111
LVM_SETITEMPOSITION32 - 4145
LVM_SETITEMSTATE - 4139
LVM_SETITEMTEXT - 4142
LVM_SETSELECTIONMARK - 4163
LVM_SETTEXTBKCOLOR - 4134
LVM_SETTEXTCOLOR - 4132
LVM_SETTOOLTIPS - 4170
LVM_SETUNICODEFORMAT - 8197
LVM_SETWORKAREAS - 4161
LVM_SORTITEMS - 4144
LVM_SUBITEMHITTEST - 4153
LVM_UPDATE - 4138

MdiMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_DROPFILES - 563
WM_MDIACTIVATE - 546
WM_MDICASCADE - 551
WM_MDICREATE - 544
WM_MDIDESTROY - 545
WM_MDIGETACTIVE - 553
WM_MDIICONARRANGE - 552
WM_MDIMAXIMIZE - 549
WM_MDINEXT - 548
WM_MDIREFRESHMENU - 564
WM_MDIRESTORE - 547
WM_MDISETMENU - 560
WM_MDITILE - 550

MessageHookEventArgs Contains the parameters relevant to the
OnMessageHook event. Refer to the OnMessageHook
event for an explanation of each field.

handling - MessageHandling
hwnd - IntPtr
inproccall - Boolean
lp - Integer
msg - Integer
nodef - Short

 - 94 -

process - Integer
retval - Integer
source - MessageInputSource
wp - Integer

MiscellaneousMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_CHOOSEFONT_GETLOGFONT - 1025
WM_CPL_LAUNCH - 5120
WM_CPL_LAUNCHED - 5121
WM_IME_CHAR - 646
WM_IME_COMPOSITION - 271
WM_IME_COMPOSITIONFULL - 644
WM_IME_CONTROL - 643
WM_IME_ENDCOMPOSITION - 270
WM_IME_KEYDOWN - 656
WM_IME_KEYLAST - 271
WM_IME_KEYUP - 657
WM_IME_NOTIFY - 642
WM_IME_REQUEST - 648
WM_IME_SELECT - 645
WM_IME_SETCONTEXT - 641
WM_IME_STARTCOMPOSITION - 269
WM_PSD_ENVSTAMPRECT - 1029
WM_PSD_FULLPAGERECT - 1025
WM_PSD_GREEKTEXTRECT - 1028
WM_PSD_MARGINRECT - 1027
WM_PSD_MINMARGINRECT - 1026
WM_PSD_PAGESETUPDLG - 1024
WM_PSD_YAFULLPAGERECT - 1030

MouseHookEventArgs Contains the parameters relevant to the
OnMouseHook event. Refer to the OnMouseHook
event for an explanation of each field.

flags - Integer
handling - MessageHandling
hitcode - Integer
hwnd - IntPtr
mousedata - Integer
msg - Integer
nodef - Short
process - Integer
time - Integer
x - Integer

 - 95 -

xtra - Integer
y - Integer

MouseMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_LBUTTONDBLCLK - 515
WM_LBUTTONDOWN - 513
WM_LBUTTONUP - 514
WM_MBUTTONDBLCLK - 521
WM_MBUTTONDOWN - 519
WM_MBUTTONUP - 520
WM_MOUSEHOVER - 673
WM_MOUSELEAVE - 675
WM_MOUSEMOVE - 512
WM_MOUSEWHEEL - 522
WM_RBUTTONDBLCLK - 518
WM_RBUTTONDOWN - 516
WM_RBUTTONUP - 517
WM_SETCURSOR - 32

MultimediaMessages Refer to your Windows API documentation on these
messages for information on these fields.

MM_JOY1BUTTONDOWN - 949
MM_JOY1BUTTONUP - 951
MM_JOY1MOVE - 928
MM_JOY1ZMOVE - 930
MM_JOY2BUTTONDOWN - 950
MM_JOY2BUTTONUP - 952
MM_JOY2MOVE - 929
MM_JOY2ZMOVE - 931
MM_MCINOTIFY - 953
MM_MIM_CLOSE - 962
MM_MIM_DATA - 963
MM_MIM_ERROR - 965
MM_MIM_LONGDATA - 964
MM_MIM_LONGERROR - 966
MM_MIM_OPEN - 961
MM_MOM_CLOSE - 968
MM_MOM_DONE - 969
MM_MOM_OPEN - 967
MM_WIM_CLOSE - 959
MM_WIM_DATA - 960
MM_WIM_OPEN - 958
MM_WOM_CLOSE - 956

 - 96 -

MM_WOM_DONE - 957
MM_WOM_OPEN - 955

NonClientMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_GETDLGCODE - 135
WM_NCACTIVATE - 134
WM_NCCALCSIZE - 131
WM_NCCREATE - 129
WM_NCDESTROY - 130
WM_NCHITTEST - 132
WM_NCLBUTTONDBLCLK - 163
WM_NCLBUTTONDOWN - 161
WM_NCLBUTTONUP - 162
WM_NCMBUTTONDBLCLK - 169
WM_NCMBUTTONDOWN - 167
WM_NCMBUTTONUP - 168
WM_NCMOUSEMOVE - 160
WM_NCPAINT - 133
WM_NCRBUTTONDBLCLK - 166
WM_NCRBUTTONDOWN - 164
WM_NCRBUTTONUP - 165

NumericPadKeys NumericPad_0 (value = 96) to NumericPad_9 value =
105)
NumericPad_Add - 107
NumericPad_Comma - 108
NumericPad_Divide - 111
NumericPad_Multiply - 106
NumericPad_Period - 110
NumericPad_Subtract - 109

PaletteMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_PALETTECHANGED - 785
WM_PALETTEISCHANGING - 784
WM_QUERYNEWPALETTE - 783

PenWindowMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_GLOBALRCCHANGE - 899
WM_HEDITCTL - 901
WM_HOOKRCRESULT - 898

 - 97 -

WM_PENWINFIRST - 896
WM_PENWINLAST - 911
WM_RCRESULT - 897
WM_SKB - 900

PunctuationKeys P_Backslash - 220
P_Comma - 188
P_Dash - 189
P_Equal - 187
P_Hyphen - 192
P_LeftBracket - 219
P_Period - 190
P_Quote - 222
P_RightBracket - 221
P_Semicolon - 186
P_Slash - 191

ScrollbarControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

SBM_ENABLE_ARROWS - 228
SBM_GETPOS - 225
SBM_GETRANGE - 227
SBM_SETPOS - 224
SBM_SETRANGE - 226
SBM_SETRANGEREDRAW - 230

ShellHookEventArgs Contains the parameters relevant to the OnShellHook
event. Refer to the OnShellHook event for an
explanation of each field.

MinRect - Rectangle
code - ShellMessageType
commandhandled - Boolean
lParam - Integer
nodef - Short
wParam - Integer

StandardMessages Refer to your Windows API documentation on these
messages for information on these fields.

WM_ACTIVATE - 6
WM_ACTIVATEAPP - 28
WM_CANCELJOURNAL - 75
WM_CANCELMODE - 31
WM_CAPTURECHANGED - 533

 - 98 -

WM_CHARTOITEM - 47
WM_CHILDACTIVATE - 34
WM_CLOSE - 16
WM_COMMAND - 273
WM_COMMNOTIFY - 68
WM_COMPACTING - 65
WM_COMPAREITEM - 57
WM_CONTEXTMENU - 123
WM_COPYDATA - 74
WM_CREATE - 1
WM_DELETEITEM - 45
WM_DESTROY - 2
WM_DEVICECHANGE - 537
WM_DEVMODECHANGE - 27
WM_DISPLAYCHANGE - 126
WM_DRAWITEM - 43
WM_DROPFILES - 563
WM_ENABLE - 10
WM_ENDSESSION - 22
WM_ENTERIDLE - 289
WM_ENTERMENULOOP - 529
WM_ERASEBKGND - 20
WM_EXITMENULOOP - 530
WM_FONTCHANGE - 29
WM_GETFONT - 49
WM_GETHOTKEY - 51
WM_GETICON - 127
WM_GETMINMAXINFO - 36
WM_GETTEXT - 13
WM_GETTEXTLENGTH - 14
WM_HANDHELDFIRST - 856
WM_HANDHELDLAST - 863
WM_HELP - 83
WM_HOTKEY - 786
WM_HSCROLL - 276
WM_ICONERASEBKGND - 39
WM_INITDIALOG - 272
WM_INITMENU - 278
WM_INITMENUPOPUP -279
WM_INPUTLANGCHANGE - 81
WM_INPUTLANGCHANGEREQUEST - 80
WM_KILLFOCUS - 8
WM_MEASUREITEM - 44
WM_MENUCHAR - 288
WM_MENUSELECT - 287
WM_MOUSEACTIVATE - 33

 - 99 -

WM_MOVE - 3
WM_MOVING - 534
WM_NEXTDLGCTL - 40
WM_NEXTMENU - 531
WM_NOTIFY - 78
WM_NOTIFYFORMAT - 85
WM_NULL - 0
WM_OTHERWINDOWCREATED - 66
WM_OTHERWINDOWDESTROYED - 67
WM_PAINT - 15
WM_PAINTICON - 38
WM_PARENTNOTIFY - 528
WM_POWER - 72
WM_POWERBROADCAST - 536
WM_PRINT - 791
WM_PRINTCLIENT - 792
WM_QUERYDRAGICON - 55
WM_QUERYENDSESSION - 17
WM_QUERYOPEN - 19
WM_QUEUESYNC - 35
WM_QUIT - 18
WM_SETCURSOR - 32
WM_SETFOCUS - 7
WM_SETFONT - 48
WM_SETHOTKEY - 50
WM_SETICON - 128
WM_SETREDRAW - 11
WM_SETTEXT - 12
WM_SETTINGCHANGE - 26
WM_SHOWWINDOW - 24
WM_SIZE - 5
WM_SIZING - 532
WM_SPOOLERSTATUS - 42
WM_STYLECHANGED - 125
WM_STYLECHANGING - 124
WM_SYSCOLORCHANGE - 21
WM_SYSCOMMAND - 274
WM_SYSTEMERROR - 23
WM_TCARD - 82
WM_TIMECHANGE - 30
WM_TIMER - 275
WM_USERCHANGED - 84
WM_VKEYTOITEM - 46
WM_VSCROLL - 277
WM_WINDOWPOSCHANGED - 71
WM_WINDOWPOSCHANGING - 70

 - 100 -

WM_WININICHANGE - 26

StaticControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

STM_GETICON - 369
STM_MSGMAX - 370
STM_SETICON - 368

TreeviewControlMessages Refer to your Windows API documentation on these
messages for information on these fields.

TVM_CREATEDRAGIMAGE - 4370
TVM_DELETEITEM - 4353
TVM_EDITLABEL - 4366
TVM_ENDEDITLABELNOW - 4374
TVM_ENSUREVISIBLE - 4372
TVM_EXPAND - 4354
TVM_GETBKCOLOR - 4383
TVM_GETCOUNT - 4357
TVM_GETEDITCONTROL - 4367
TVM_GETIMAGELIST - 4360
TVM_GETINDENT - 4358
TVM_GETINSERTMARKCOLOR - 4390
TVM_GETISEARCHSTRING - 4375
TVM_GETITEM - 4364
TVM_GETITEMHEIGHT - 4380
TVM_GETITEMRECT - 4356
TVM_GETNEXTITEM - 4362
TVM_GETSCROLLTIME - 4386
TVM_GETTEXTCOLOR - 4384
TVM_GETTOOLTIPS - 4377
TVM_GETVISIBLECOUNT - 4368
TVM_HITTEST - 4369
TVM_INSERTITEM - 4352
TVM_SELECTITEM - 4363
TVM_SETBKCOLOR - 4381
TVM_SETIMAGELIST - 4361
TVM_SETINDENT - 4359
TVM_SETINSERTMARK - 4378
TVM_SETINSERTMARKCOLOR - 4389
TVM_SETITEM - 4365
TVM_SETITEMHEIGHT - 4379
TVM_SETSCROLLTIME - 4385
TVM_SETTEXTCOLOR - 4382
TVM_SETTOOLTIPS - 4376

 - 101 -

TVM_SORTCHILDREN - 4371
TVM_SORTCHILDRENCB - 4373

VirtualKeys VK_Alt - 18
VK_Attn - 246
VK_Backspace - 8
VK_CapsLock - 20
VK_Clear - 12
VK_Ctrl - 17
VK_CtrlBreak - 3
VK_Delete - 46
VK_DownArrow - 40
VK_End - 35
VK_Enter - 13
VK_Escape - 27
VK_Execute - 43
VK_Help - 47
VK_Home - 136
VK_Insert - 45
VK_LeftArrow - 37
VK_Numlock - 144
VK_PageDown - 34
VK_PageUp - 33
VK_Pause - 19
VK_Play - 250
VK_Print - 42
VK_PrintScreen - 44
VK_Process - 229
VK_RightArrow - 39
VK_Scroll - 145
VK_Select - 41
VK_Shift - 16
VK_Space - 32
VK_Tab - 9
VK_UpArrow - 38
VK_Zoom - 251

WindowsMessageList Used by the WinHook and Subclasser object’s
Messages property to hold a list of windows messages
to detect for. If Messages property is not set, or is set
to an instance of this class that does not contain any
messages, then the objects will detect all windows
messages.

AddMessage – Adds the message specified to the list
of messages to detect.

 - 102 -

[VB] Sub AddMessage(ByVal messagenumber As
Integer)
[C#] void AddMessage(int messagenumber)

MessageList – Returns an integer array containing the
windows messages being detected.
[VB] Function MessageList() As Integer()
[C#] int()MessageList()

RemoveMessage – Removes the specified windows
message from the list of windows message to detect.
[VB] Sub RemoveMessage (ByVal messagenumber
As Integer)
[C#] void RemoveMessage (int messagenumber)

WindowsMessages Base class from which the *Messages classes inherit
from, you will not need to use this class directly.

WndMessageEventArgs Contains the parameters relevant to the Subclass
object’s OnWndMessage event. Refer to the Subclass
object’s OnWndMessage event for an explanation of
each field.

hwnd - IntPtr
lp - Integer
msg - Integer
nodef - Short
process - Integer
retval - Integer
wp - Integer

Desaware.SpyWorks Main Classes

Controller Class
This class serves as the base class for the WinHook and Subclasser class. You will
probably not use this class directly.

Properties

CrossTaskTimeout [VB] Property CrossTaskTimeout As Integer

[C#] int CrossTaskTimeout

This property contains the timeout value when

 - 103 -

performing cross-task (or cross-process) subclassing or
system wide hooking. When doing cross-task
subclassing or system wide hooking, it is quite possible
for an application to freeze up the entire system. The
Controller class has a watchdog timer during
subclassing or hooking that, when it times out, will
interrupt the subclass or hook. This property sets the
timeout value. Be aware that processing time within
the OnWndMessage subclass event and equivalent
hook event counts toward the timeout time, so if there
are any breakpoints set in these events, set this property
to a very high value while debugging.

Methods

GetAnsiString [VB] Function GetAnsiString(ByVal Address As

IntPtr, ByVal Process As Integer) As String
[C#] string GetAnsiString(IntPtr Address,
int Process)

This method takes an Ansi string address and the
process ID, and returns the actual string. This allows
the ability to retrieve a string from other processes if
you know the string’s address in the other process.

GetRegisteredWindowMessage [VB] Function GetRegisteredWindowMessage
(ByVal MessageName As String) As Integer
[C#] int GetRegisteredWindowMessage (string
MessageName)

This method returns the message number associated
with the registered Windows message specified in the
MessageName parameter.

GetUnicodeString [VB] Function GetUnicodeString(ByVal Address
As IntPtr, ByVal Process As Integer) As
String
[C#] string GetUnicodeString (IntPtr
Address, int Process)

This method takes a Unicode string address and the
process ID, and returns the actual string. This allows
the ability to retrieve a string from other processes if
you know the string’s address in the other process.

 - 104 -

KeyHook Class
This class inherits from the WinHook class and is used to detect keyboard keys.
Properties and Methods described in the WinHook class will not be described here.

Properties

HookType [VB] Property HookType As HookTypes

[C#] HookTypes HookType

Windows provides a number of different types of windows
hooks. The KeyHook object supports the Keyboard and
KeyboardLL hooks.

An in-depth discussion of these hooks is beyond the scope of
this manual. It is assumed that anyone wishing to use this
documentation has access to the Windows software
development kit or Developer’s Network CD-ROM.

Keyboard – Implements a WH_KEYBOARD hook. This hook
is triggered by keyboard events.

KeyboardLL – Implements a WH_KEYBOARD_LL hook.
This hook is triggered by keyboard events.

This property overrides the WinHook HookType property.
Attempting to set other types of hook (other than Keyboard and
KeyboardLL) will cause an error when using the KeyHook
class.

IgnoreCapsLock [VB] Property IgnoreCapsLock As Boolean
[C#] bool IgnoreCapsLock

When set to False, alphabetic characters are shifted according to
the state of the CapsLock key. Other keys are not affected.
When this property has a value of True, the CapsLock key has
no effect.

KeyFilterList [VB] Property KeyFilterList As KeyList
[C#] KeyList KeyFilterList

This property refers to a KeyList object that contains the list of
keys to detect. This property is initially set to Nothing which
will cause the component to detect all keys. Most keys are
exposed through one of the Desaware.SpyWorks.*Keys
enumerators, making it easy to add them to a KeyList.

ViewPeeked [VB] Property ViewPeeked As Boolean

 - 105 -

[C#] bool ViewPeeked

Keyboard hook events are triggered any time the system reads a
key event from the system queue. However, reading an event
does not mean that the event is always removed from the system
queue. In some cases a key event is “peeked” - previewed, and
it remains in the queue. This property determines whether you
want to see these peeked keys. Normally, you will want to leave
this property False.

Events

OnKeyDown [VB] Sub KeyHook1_OnKeyDown(ByVal sender As Object,

ByVal e As Desaware.SpyWorks.KeyboardHookEventArgs)
[C#] void KeyHook1_OnKeyDown(object sender,
Desaware.SpyWorks.KeyboardHookEventArgs e)

This event occurs when the HookType is set to Keyboard and a
keyboard event occurs in which the key is pressed. The
KeyboardHookEventArgs parameters are as follows:

code (KeyboardHookType) – Indicates whether the key that
triggered this event was “peeked” and will remain in the queue
after this event exits. For more information, refer to the
ViewPeeked property.

discard (Boolean) – If the AsyncNotification property is False,
then setting this field to True will cause the keystroke to be
discarded before it is processed by Windows.

keycode (Integer) - Specifies the virtual-key code of the key
that generated the keystroke message.

keystate (Short) – this field is defined as follows:

Bit 0 - 7 the hardware dependent scan code.
Bit 8 = 1 if this is an extended key (function key or on the
numeric keypad)
Bit 9 = 1 if this key is being “peeked” (i.e. this event was
not removed from the system queue). This is only possible if the
ViewPeeked property is set to True.
Bit 13 = 1 if the ALT key is down
Bit 14 = 1 if the key was previously down, 0 if it was up.
Bit 15 = 1 if the key is being released, 0 if pressed.

 - 106 -

processId (Integer) – this field is the process id of the process
receiving the keys or zero to indicate the current process.

repetitions (Short) - this field is the repeat count for this key
event.

shiftstate (Short) – this bit field corresponds to the modifier key
as follows:

Bit 0 = 1 The shift key is down.
Bit 1 = 1 The control key is down.
Bit 2 = 1 The alt key is down.

OnKeyDownLL [VB] Sub KeyHook1_OnKeyDownLL(ByVal sender As
Object, ByVal e As
Desaware.SpyWorks.KeyboardLLHookEventArgs)
[C#] void KeyHook1_OnKeyDownLL(object sender,
Desaware.SpyWorks.KeyboardLLHookEventArgs e)

This event occurs when the HookType is set to KeyboardLL
and a keyboard event occurs in which the key is pressed. The
KeyboardLLHookEventArgs parameters are as follows:

discard (Boolean) – If the AsyncNotification property is False,
then setting this field to True will cause the keystroke to be
discarded before it is processed by Windows.

ExtraInfo (Integer) – Specifies extra information associated
with this key.

flags (Integer) – this field is defined as follows:

Bit 0 = 1 if the key is an extended key, such as a function
key or a key on the numeric keypad. The IsExtended function
can be used to test this bit.
Bit 4 = 1 if the key was injected. The IsInjected function
can be used to test this bit.
Bit 5 = 1 if the ALT key is pressed. The IsAltPressed
function can be used to test this bit. NOTE that from our testing,
this bit does not seem to reflect the state of the ALT key
accurately some of the time. We suggest that you use the
shiftstate field instead to retrieve the state of the ALT key.
Bit 7 = 1 if the key is being released, 0 if pressed. The
IsKeyRelease function can be used to test this bit.

message (Integer) – Specifies the identifier of the keyboard
message - one of the following KeyboardMessages fields:

 - 107 -

WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN, or
WM_SYSKEYUP.

processId (Integer) – this field is the process id of the process
receiving the keys or zero to indicate the current process.

scancode (Integer) – Specifies a hardware scan code for the key
that generated the keystroke message.

shiftstate (Short) – this bit field corresponds to the modifier key
as follows:

Bit 0 = 1 The shift key is down.
Bit 1 = 1 The control key is down.
Bit 2 = 1 The alt key is down.

time (Integer) – Specifies the time stamp for this message.

vkCode (Integer) – Specifies the virtual-key code of the key that
generated the keystroke message.

OnKeyUp [VB] Sub KeyHook1_OnKeyUp(ByVal sender As Object,
ByVal e As Desaware.SpyWorks.KeyboardHookEventArgs)
[C#] void KeyHook1_OnKeyUp(object sender,
Desaware.SpyWorks.KeyboardHookEventArgs e)

This event occurs when the HookType is set to Keyboard and a
keyboard event occurs in which the key is released. The
parameters are identical to the OnKeyDown event.

OnKeyUpLL [VB] Sub KeyHook1_OnKeyUpLL(ByVal sender As Object,
ByVal e As
Desaware.SpyWorks.KeyboardLLHookEventArgs)
[C#] void KeyHook1_OnKeyUpLL(object sender,
Desaware.SpyWorks.KeyboardLLHookEventArgs e)

This event occurs when the HookType is set to KeyboardLL
and a keyboard event occurs in which the key is released. The
parameters are identical to the OnKeyDownLL event.

Subclasser Class
This class allows you to subclass any existing Window. This class is more efficient than
the WinHook or KeyHook classes, so you should use this class in place of those classes
whenever possible.

 - 108 -

Properties

HwndParam [VB] Property HwndParam As IntPtr

[C#] IntPtr HwndParam

Specifies the handle of the window to subclass. Set this
property to zero (IntPtr.Zero) to end subclassing.

Messages [VB] Property Messages As WindowsMessageList
[C#] WindowsMessageList Messages

Contains a list of the message numbers that are currently being
subclassed by the Subclasser object.

SubclassingType [VB] Property SubclassingType As SubclassingTypes
[C#] SubclassingTypes SubclassingType

There are three types of subclassing possible:

SubclassingType.PreDefault – The message is intercepted
before default processing for the message takes place. Any
modifications you make to the message number or wParam and
lParam parameters for the message will be passed on to the
default message handler. You also have the option to prevent
default message processing and specify a return value to the
calling function.

SubclassingType.PostDefault – The message is intercepted after
default processing for the message takes place. Changes to the
message number or wParam and lParam parameters will have
no effect on the default message processing, but would affect
any other Subclasser objects that are subclassing this window.

SubclassingType.Asynchronous – Any time the message is
detected, the OnWndMessage will be raised via an
asynchronous delegate some time after the message has been
processed This method is ideal for detecting messages that do
not have to be handled immediately. There are no restrictions on
the contents of the event procedure when this technique is used.
Changes to the message number or wParam and lParam
parameters will have no effect.

Events

OnWndMessage [VB] Sub SubClass1_OnWndMessage(ByVal sender As

 - 109 -

Object, ByVal e As
Desaware.SpyWorks.WndMessageEventArgs)
[C#] void SubClass1_OnWndMessage(object sender,
Desaware.SpyWorks.WndMessageEventArgs e)

This event is triggered when a Windows message as specified in
the Messages property is detected for the specified Window.
The WndMessageEventArgs parameters are as follows:

hwnd (IntPtr) – Window handle of the window receiving the
message.

lp (Integer) – The lParam parameter, this depends on the msg
parameter.

msg (Integer) – The windows message number.

nodef (Short) – Set to non-zero to prevent default message
processing.

process (Integer) –The process ID of the process this windows
message is intended for.

retval (Integer) – The return value to the sender of the message.

wp (Integer) – The wParam parameter, this depends on the msg
parameter.

When the SubclassingType property is set to PreDefault, the
WndMessageEventArgs.retval parameter only returns a value to
the calling function if you set the WndMessageEventArgs.nodef
parameter to non-zero. If you leave the
WndMessageEventArgs.nodef parameter as zero, the default
window function for the window is called and the value that it
returns is passed on to the calling function.

When the SubclassingType property is set to PostDefault, the
WndMessageEventArgs.retval parameter contains the value
returned by the default window function for the window. You
can override this return value by changing the value of the
WndMessageEventArgs.retval parameter and setting the
WndMessageEventArgs.nodef parameter to non-zero.
Remember, the WndMessageEventArgs.retval parameter will
only be returned if the WndMessageEventArgs.nodef parameter
is set to non-zero (even though it obviously cannot block default
processing that has already occurred).

 - 110 -

The retval and nodef parameters have no effect when the
subclassing type is asynchronous.

WinHook Class
This class serves as the base class for the KeyHook class and is used to set a Windows
hook. The most likely HookTypes that you will use are the GetMessage, Mouse,
Keyboard and CallWndProc hooks. Refer to the HookType property on how to use these
hook types. Note that this object raises different events for different types of hooks.

Use of the nodef event parameter
Most WinHook event argument classes include a nodef field which can be set during
event processing. This event provides direction to the dwshengine80.dll engine to not call
the CallNextHookEx function. If other applications have placed the same hook, this will
in many cases prevent the other hook from being called. If the hook accepts a True return
value to indicate the message was handled, setting nodef will return True. For
CBTHooks, setting nodef to True will cause the value specified by the
BlockCBTOperation parameter to be returned.

Properties

AsyncNotification [VB] Property AsyncNotification As Boolean

[C#] bool AsyncNotification

True to specify that the WinHook object should trigger an event
when the message is detected. False to specify that the
WinHook object should trigger an event during the course of
normal windows processing.

Enabled [VB] Property Enabled As Boolean
[C#] bool Enabled

Enabled or disables the Windows hook.

HookType [VB] Property HookType As HookTypes
[C#] HookTypes HookType

Windows provides a number of different types of windows
hooks. The WinHook object supports twelve types of hooks.
Two additional hook types, the keyboard hook and low level
keyboard hook, are supported by the KeyHook object. Each
type of hook detects a different subset of messages and different
types. You will probably want to experiment to determine
which hook type is appropriate for your needs.

 - 111 -

An in-depth discussion of each type of hooks is beyond the
scope of this manual. It is assumed that anyone wishing to use
this documentation has access to the Windows software
development kit or Developer’s Network CD-ROM.

CallWndProc – Implements a WH_CALLWNDPROC hook.
This hook is triggered any time a message is sent to a window
function. This hook type detects every message received by a
window. Even with the advanced filtering used by SpyWorks,
use of this hook can impact system performance and should be
avoided if possible.

CallWndProcRet – Implements a WH_CALLWNDPROCRET
hook. This hook is triggered any time a windows function
returns from a message. This hook type detects every message
received by a window. Even with the advanced filtering used by
SpyWorks, use of this hook can impact system performance and
should be avoided if possible.
CBT – Implements a WH_CBT hook. This hook is used to
implement computer based training applications, providing
information on a variety of windows events.

ForegroundIdle – Implements a WH_FOREGROUNDIDLE
hook. This hook is used to detect when the foreground thread is
about to become idle.

GetMessage – Implements a WH_GETMESSAGE hook. This
hook is triggered any time an API function called GetMessage
(or PeekMessage) is called during the main message handling
loop of a Windows application. It does not detect every message
received by a window function, but it is very efficient.

JournalPlayback – Implements a WH_JOURNALPLAYBACK
hook. This hook is used to simulate keyboard and mouse events
to the system, typically after being recorded using the
JournalRecord hook.

JournalRecord – Implements a WH_JOURNALRECORD hook.
This hook is used to record keyboard and mouse events on the
system, typically to implement a macro recorder.

Keyboard – Implements a WH_KEYBOARD hook. This hook
is triggered by keyboard events.

KeyboardLL – Implements a WH_KEYBOARD_LL hook.

 - 112 -

This hook is triggered by keyboard events.

MessageFilter – Implements a WH_MSGFILTER hook. This
hook is triggered any time a non-system message is sent to a
dialog box, message box or menu.

Mouse – Implements a WH_MOUSE hook. This hook is
triggered by mouse events.

MouseLL – Implements a WH_MOUSE_LL hook. This hook is
triggered by mouse events.

Shell – Implements a WH_SHELL hook. This hook is triggered
when the shell application is about to be activated and when a
top-level window is created or destroyed.

SysMessageFilter – Implements a WH_SYSMSGFILTER
hook. This hook is triggered any time a system message is sent
to a dialog box, message box or menu.

HwndParam [VB] Property HwndParam As IntPtr
[C#] IntPtr HwndParam

This property only has an effect when the Monitor property is
set to '5 - HwndParam', or '6 – HwndAndChildren'. When set at
runtime to a window handle, only messages sent to this
window, or to this window and to its descendants (depending on
the Monitor property), will be detected.

Messages [VB] Property Messages As WindowsMessageList
[C#] WindowsMessageList Messages

This property refer to a WindowsMessageList object that
contains the Windows messages to detect. This property is
initially set to Nothing which will hook all Windows messages.
Most Windows messages are also exposed through one of the
Desaware.SpyWorks.*Messages enumerator classes.

Monitor [VB] Property Monitor As HookMonitor
[C#] HookMonitor Monitor

Windows hooks are designed to intercept messages on a global
basis. The Monitor property provides a degree of filtering to
help you limit which messages to detect in order to improve
system efficiency. The values of this property are as follows:

EntireSystem - Messages will be detected for all processes.

 - 113 -

HwndAndChildren - Only messages going to window whose
handle is set into the HwndParam property and the children of
that window will be detected.

HwndParam - Only messages going to the window whose
handle is set into the HwndParam property will be detected.

ProcessParam - Only messages going to windows owned by the
process whose process ID is set into the ProcessParam property
will be detected.

ThisProcess - Only messages going to windows in the process
that creates this WinHook object will be detected.

ThisThread - Only messages going to windows in the thread
that creates this WinHook object will be detected.

ThreadParam - Only messages going to windows owned by the
thread whose thread ID is set into the ThreadParam property
will be detected.

ProcessParam [VB] Property ProcessParam As Integer
[C#] int ProcessParam

This property only has an effect on the Windows hook when the
Monitor property is set to ProcessParam. In this case, only
messages going to Windows belonging to the process specified
by ProcessParam will be detected. Be sure to set this to the
process id of a process.

ThreadParam [VB] Property ThreadParam As Integer
[C#] int ThreadParam

This property only has an effect on the Windows hook when the
Monitor property is set to ThreadParam. In this case, only
messages going to Windows belonging to the thread specified
by ThreadParam will be detected. Be sure to set this to the
thread id of a thread.

Events

OnCBTHook [VB] Sub WinHook1_OnCBTHook(ByVal sender As

Object, ByVal e As
Desaware.SpyWorks.CBTHookEventArgs)
[C#] void WinHook1_OnCBTHook(object sender,

 - 114 -

Desaware.SpyWorks.CBTHookEventArgs e)

This event is triggered for messages detected when the
HookType property is set to CBT. The CBTHookEventArgs
parameters are as follows:

ActivateStruct (CBTActivateStruct) – Refer to your Windows
API documentation for the CBTProc function for information
on this parameter.

BlockCBTOperation (Boolean) – Set to True to prevent the
current event from taking place. This parameter sets the return
value to the CBTProc hook function. Refer to your Windows
API documentation for the CBTProc function for information
on this parameter and which CBT events it applies to. You
must also set the nodef parameter to non-zero for this property
to take effect.

code (CBTMessageType) – Refer to your Windows API
documentation for the CBTProc function for information on
this parameter.

CreateWndStruct (CBTCreateStruct) – Refer to your
Windows API documentation for the CBTProc function for
information on this parameter.

lParam (Integer) – This parameter depends on the code
parameter.

MouseHookStruct (CBTMouseHookStruct) – Refer to your
Windows API documentation for the CBTProc function for
information on this parameter.

MoveSizeRect (Rectangle) – Refer to your Windows API
documentation for the CBTProc function for information on
this parameter.

nodef (Short) – Refer to Use of the nodef parameter. You
must set this to non-zero for the BlockCBTOperation
parameter to take effect.

wParam (Integer) – This parameter depends on the code
parameter.

An in-depth discussion of CBT hooks is beyond the scope of
this manual. It is assumed that anyone wishing to use this
documentation has access to the Windows software

 - 115 -

development kit or Developer’s Network CD-ROM.

The lParam parameter is frequently a pointer to a structure
(whether this is the case, and the type of structure, depends on
the code). The WinHook object is aware of the types of
structures supported, and ensures that the structure and
contents are copied into the current memory address space -
an important issue under Windows 95/98/ME and Windows
NT/2000/XP where address pointers may not be valid when
moved between processes.

OnForegroundIdleHook [VB] Sub WinHook1_OnForegroundIdleHook(ByVal
sender As Object, ByVal e As Desaware.SpyWorks.
ForegroundIdleHookEventArgs)
[C#] void WinHook1_OnForegroundIdleHook(object
sender,
Desaware.SpyWorks.ForegroundIdleHookEventArgs e)

This event is triggered when the HookType property is set to
ForegroundIdle and the foreground thread is about to become
idle. The ForegroundIdleHookEventArgs parameters are as
follows:

nodef (Short) - Refer to Use of the nodef parameter.

Use this hook to detect when your process is entering an idle
state. At this point, you can run some background operations
without taking CPU time from your main process.

OnJournalPlaybackHook [VB] Sub WinHook1_OnJournalPlaybackHook(ByVal
sender As Object, ByVal e As
Desaware.SpyWorks.JournalPlaybackHookEventArgs)
[C#] void WinHook1_OnJournalPlaybackHook(object
sender,
Desaware.SpyWorks.JournalPlaybackHookEventArgs e)

This event is triggered when the HookType property is set to
JournalPlayback and the messages are detected. The
JournalPlaybackHookEventArgs parameters are as follows:

code (JournalMessageType) – Refer to your Windows API
documentation for the JournalPlaybackProc function for
information on this parameter.

delay (Integer) – Specifies the delay in milliseconds until the
message will be placed in the system queue. Zero for no delay
(default).

 - 116 -

msg (Integer) – The keyboard or mouse message to place in
the system queue.

mtime (Integer) – Specifies the time stamp for the message.

paramH (Integer) – This parameter depends on the msg
parameter.

paramL (Integer) – This parameter depends on the msg
parameter.

wnd (IntPtr) – Specifies the window handle.

An in-depth discussion of Journal hooks is beyond the scope
of this manual. It is assumed that anyone wishing to use this
event has access to the Windows software development kit or
Microsoft Developer’s Network CD-ROM.

OnJournalRecordHook [VB] Sub WinHook1_OnJournalRecordHook(ByVal sender
As Object, ByVal e As
Desaware.SpyWorks.JournalRecordHookEventArgs)
[C#] void WinHook1_OnJournalRecordHook(object
sender,
Desaware.SpyWorks.JournalRecordHookEventArgs e)

This event is triggered when the HookType property is set to
JournalRecord and the messages are detected. The
JournalRecordHookEventArgs parameters are as follows:

code (JournalMessageType) – Refer to your Windows API
documentation for the JournalRecordProc function for
information on this parameter.

delay (Integer) – Specifies the delay in milliseconds until the
message will be placed in the system queue. Zero for no delay
(default).

msg (Integer) – The keyboard or mouse message to place in
the system queue.

mtime (Integer) – Specifies the time stamp for the message.

paramH (Integer) – This parameter depends on the msg
parameter.

paramL (Integer) – This parameter depends on the msg
parameter.

 - 117 -

wnd (IntPtr) – Specifies the window handle.

An in-depth discussion of Journal hooks is beyond the scope
of this manual. It is assumed that anyone wishing to use this
event has access to the Windows software development kit or
Microsoft Developer’s Network CD-ROM.

OnMessageHook [VB] Sub WinHook1_OnMessageHook(ByVal sender As
Object, ByVal e As
Desaware.SpyWorks.MessageHookEventArgs)
[C#] void WinHook1_OnMessageHook(object sender,
Desaware.SpyWorks.MessageHookEventArgs e)

This event is triggered for messages detected when the
HookType property is set to either CallWndProc,
CallWndProcRet, GetMessage, MessageFilter or
SysMessageFilter. The MessageHookEventArgs parameters
are as follows:

handling (MessageHandling) – Valid only for the GetMessage
HookType. If set to Remove, indicates that the message is
removed from the message queue after exiting this event. If
set to NoRemove, indicates that the message will remain on
the message queue after exiting this event (and will trigger
another event later).

hwnd (IntPtr) – Window handle for the message.

inproccall (Boolean) – For the CallWndProc and
CallWndProcRet hook types, this parameter will be True if
the message was sent by the executing thread (this will be the
event thread unless the AsyncNotification property is True).

lp (Integer) – This parameter depends on the msg parameter.

msg (Integer) – Windows message that was detected.

nodef (Short) – Refer to Use of the nodef parameter. You must
set this to non-zero to return a value with the
CallWndProcRet hook type.

process (Integer) – Process id of the process the message is
intended for.

retval (Integer) – Sets the return value from the hook, valid
only when the HookType property is set to CallWndProcRet

 - 118 -

and the nodef property is set to True.

source (MessageInputSource) – Describes the type of input
event that generated the windows message. Valid only when
the HookType property is set to MessageFilter or
SysMessageFilter.

wp (Integer) – This parameter depends on the msg parameter.

An in-depth discussion of these hooks is beyond the scope of
this manual. It is assumed that anyone wishing to use this
event has access to the Windows software development kit or
Microsoft Developer’s Network CD-ROM.

OnMouseHook [VB] Sub WinHook1_OnMouseHook(ByVal sender As
Object, ByVal e As
Desaware.SpyWorks.MouseHookEventArgs)
[C#] void WinHook1_OnMouseHook(object sender,
Desaware.SpyWorks.MouseHookEventArgs e)

This event is triggered for messages detected when the
HookType property is set to Mouse or MouseLL. The
MouseHookEventArgs parameters are as follows:

flags (Integer) – Valid only when the HookType is set to
MouseLL. Bit field that specifies the event-injected flag.
Currently, Bit 0 is set if this message was injected.

handling (MessageHandling) - If set to Remove, indicates that
the message is removed from the message queue after exiting
this event. If set to NoRemove, indicates that the message will
remain on the message queue after exiting this event (and will
trigger another event later).

hitcode (Integer) – Valid only when the HookType is set to
Mouse. A 32 bit hit test code identifying the type of screen
object at the position indicated. Refer to your Windows API
reference or the on-line help for a list of these codes.

hwnd (IntPtr) – Valid only when the HookType is set to
Mouse. Window handle for the message.

mousedata (Integer) - Valid only when the HookType is set to
MouseLL. Contains information on the mouse wheel or x
button.

msg (Integer) – Window message that was detected.

 - 119 -

nodef (Short) - Refer to Use of the nodef parameter.

process (Integer) – Process id of the process the message is
intended for.

time (Integer) – Valid only when the HookType is set to
MouseLL. Time stamp for this message.

x (Integer) – The x location of the cursor in screen
coordinates.

xtra (Integer) – Specifies extra information associated with
the message.

y (Integer) – The y location of the cursor in screen
coordinates.

An in-depth discussion of Mouse or MouseLL hooks is
beyond the scope of this manual. It is assumed that anyone
wishing to use this event has access to the Windows software
development kit or Microsoft Developer’s Network CD-
ROM.

OnShellHook [VB] Sub WinHook1_OnShellHook(ByVal sender As
Object, ByVal e As
Desaware.SpyWorks.ShellHookEventArgs)
[C#] void WinHook1_OnShellHook(object sender,
Desaware.SpyWorks.ShellHookEventArgs e)

This event is triggered when the WinHook object receives
notifications of shell events from the system when the
HookType property is set to Shell. The ShellHookEventArgs
parameters are as follows:

code (ShellMessageType) – Refer to your Windows API
documentation for the ShellProc function for information on
this parameter.

commandhandled (Boolean) – If the code is of type
HSHELL_APPCOMMAND, this parameter sets the return
value of the ShellProc function indicating whether the
command was processed. You must set the nodef parameter to
True to use this as well.

lParam (Integer) - This parameter depends on the code
parameter.

 - 120 -

MinRect (Rectangle) – Contains the window size information
for the minimized/maximized window, valid only when the
code is set to GetMinRect.

nodef (Short) – Refer to Use of the nodef parameter. You
must set this to non-zero to use the commandhandled
parameter.

wParam (Integer) – This parameter depends on the code
parameter.

An in-depth discussion of Shell hooks is beyond the scope of
this manual. It is assumed that anyone wishing to use this
event has access to the Windows software development kit or
Microsoft Developer’s Network CD-ROM.

dwsbc80.ocx Reference

Introduction

The dwsbc80.ocx file is an ATL based COM/ActiveX control that exposes Windows
Subclass technology. Although our testing have found that this control works fine on the
Visual Studio .NET platform (with one exception – refer to the next section for details),
Desaware recommends using the new Desaware.shcomponent.dll component in place of
the previous Subclass and WinHook COM controls for development on the Visual Studio
.NET platform.

Features:
• Detect windows messages for any window, form or control (those with a window

handle) in the system and trigger an event when it occurs.
• Detect messages before the Windows default processing, after the Windows

default processing, or simply post it to yourself for later examination.
• When detecting messages before the default processing, you can change the

message or its parameters, or cause the message to be completely ignored.
• Subclass windows in other applications - you can effectively create .NET

applications that add their own menu commands to another application so that
your .NET application acts as an Add-on to that application.

• Specify exactly which messages to detect - this minimizes the overhead to provide
the fastest possible performance.

• Detect registered windows messages.

 - 121 -

• Delayed event processing - allows you to "post" an event to yourself without
setting up a timer control.

• Each dwsbc80.ocx subclass control can subclass multiple windows or controls
(limited only by memory).

• In order to retrieve strings or data across processes, several cross-process string
and data access functions have been included.

Properties
The dwsbc80.ocx subclass control includes support for both COM/ActiveX and .NET
development platforms. Some properties are useful or applicable only in the
COM/ActiveX development platform. Only those properties valid in the .NET
development platform are described here.

AddHwnd [VB] WriteOnly Property AddHwnd As Integer

[C#] int AddHwnd [set]

Setting the AddHwnd property to the handle of a
window causes the specified window to be added to the
array of windows being subclassed.

ClearMessage [VB] WriteOnly Property ClearMessage As
Integer
[C#] int ClearMessage [set]

At runtime, setting this property to the value of a
message number causes that message number to be
removed from the filter list of messages that will be
detected.

CrossTaskTimeout [VB] Property CrossTaskTimeout As Integer
[C#] int CrossTaskTimeout

This property contains the timeout value when
performing cross-process subclassing or hooking. When
doing cross-process subclassing or hooking, it is quite
possible for an application to freeze up the entire
system. The SubClass control has a watchdog timer
during subclassing that, when it times out, will interrupt
the subclass. This property sets the timeout value. Be
aware that processing time within the WinMessageX
event counts toward the timeout time, so if there are any
breakpoints in the WinMessageX event, set this property
to a very high value.

HookCount [VB] ReadOnly Property HookCount As Integer
[C#] int HookCount [get]

 - 122 -

This property returns the total number of windows
subclassed using the subclassing array.

HwndArray [VB] Function get_HwndArray (ByVal index As
Short) As Integer
[C#] int get_HwndArray (short index)

This property array allows you to read the window
handles of the windows that are being subclassed in the
subclassing array.

HwndParam [VB] Property HwndParam As Integer
[C#] int HwndParam

Setting this property to the handle of a window at
runtime causes the SubClass control to subclass that
window. Set this property to zero to end subclassing
using this property. This property has no effect on
controls subclassed using the subclassing array.

MessageArray [VB] Function get_MessageArray (ByVal index
As Short) As Integer
[C#] int get_MessageArray (short index)

This property array can be used to read the message
numbers that are currently being intercepted by the
SubClass control.

MessageCount [VB] ReadOnly Property MessageCount As Short
[C#] short MessageCount [get]

This property can be read to determine the number of
messages that are currently being detected, not including
registered messages.

Messages [VB] Property Messages As Integer
[C#] int Messages

This property is used to determine which messages the
subclass control will detect. It can be used in two ways.
At design time, click on the '...' in the property bar to
bring up the SubClass control’s Message List form
which is used to select messages.
At runtime, setting this property to the value of a
message number causes that message number to be
added to the filter list of messages that will be detected.
You can use the MessageArray and MessageCount

 - 123 -

properties to determine which messages have been set
for a SubClass control.
Only messages that are specified will be detected. If no
messages are specified, the SubClass control will detect
all messages.

Refer to the RegMessage properties for information on
detecting registered windows messages.
The Message List form appears when you press the '...'
button on the property window for the Message
property. Messages are divided into groups as defined
in the SpyWorks.ini file. You can use the Message
Groups combo box to select the group from which to
select messages.
The available messages for each group appears in the
Available Messages list box. You can select a message
by clicking on the Add button when the message is
highlighted, or double clicking on the message.
The Remove button can be used to cancel detection of a
message.
If a message is not already defined by the system, you
have two choices. You can add the message to the
SpyWorks.ini file, or enter the message value directly
into the user defined edit box. This edit box accepts the
standard &H or 0X format to specify hexadecimal
notation, or you can leave the "Default Hex" check box
checked, in which case your entry is assumed to be
always in hex.
In some cases a message number is used by multiple
groups. In this case, the Message Select dialog box will
use the most recently selected group to determine the
name of the message. Messages are saved internally by

 - 124 -

value, not name.

Persist [VB] Property Persist As Boolean
[C#] bool Persist

Some OLE controls have a window handle only when
active; not at other times. If the OLE control being
subclassed destroys and recreates its window, the
SubClass control will lose the subclass link with the
OLE control. When the Persist property is True, the
SubClass control will monitor for the destruction and
recreation of the window that is being subclassed, and
will automatically re-subclass the OLE control when the
window is recreated.

PostEvent [VB] WriteOnly Property PostEvent As Integer
[C#] int PostEvent [set]

Sometimes you will run into a situation where you want
to do something "later", but don't want to go through the
hassle of setting up a timer control (not to mention
dealing with the delay inherent in setting a timer delay).
The PostEvent property can be used to place an event in
the message processing queue that will occur during the
course of normal event processing. The long value set
into this property will be passed as a parameter to the
DelayedEvent event.
This property is especially valuable to divide the
processing of a message into two parts - the part that
needs to be processed immediately with the message (at
which time there may be limits on the allowed
operations), and the part of processing that can be
deferred.

RegMessage1 to
RegMessage5

[VB] Property RegMessage1 As String
[C#] string RegMessage1

Most messages dealt with in Windows are specified by
constant values. In some cases, however, messages are
known by name and their value can change each time
the application is run. These are known as registered
messages.
Each SubClass control can detect up to five registered
messages. Simply set the contents of the RegMessage1
through RegMessage5 properties to the message name.
This property can be set at either runtime or design time.

 - 125 -

RegMessageNum [VB] Function get_RegMessageNum (ByVal index
As Short) As Integer
[C#] int get_RegMessageNum (short index)

This array gives the message numbers associated with
the registered messages specified in the RegMessage
properties. The RegMessage properties are specified by
a string containing the name of the registered message to
hook, while the RegMessageNum property array will
give the actual message number that is associated with
the registered message.

RemoveHwnd [VB] WriteOnly Property RemoveHwnd As Integer
[C#] int RemoveHwnd [set]

Setting this property to the handle of a window removes
that window from the subclassing array, and stops
subclassing of that window.

Type [VB] Property Type As
Desaware.SpyWorks.dwsbcNET.enumTypeConstants
[C#]
Desaware.SpyWorks.dwsbcNET.enumTypeConstants
Type

There are three types of subclassing possible:

0 = Pre-Default (sbcPreDefault) - The message is
intercepted before default processing for the message
takes place. Any modifications you make to the message
number or wp and lp parameters for the message will be
passed on to the default message handler. You also have
the option to prevent default message processing and
specify a return value to the calling function.

1 = Post-Default (sbcPostDefault) - The message is
intercepted after default processing for the message
takes place. Changes to the message number or wp and
lp parameters will have no effect on the default message
processing, but would affect any other SubClass controls
that are subclassing this window.

2 = Posted (sbcPosted) - Any time the message is
detected, the message and parameters are posted to the
SubClass control. Changes to the message number or wp
and lp will have no effect. The WndMessage event will
occur at some time after the message has been
processed, during the course of normal event processing.

 - 126 -

This method is ideal for detecting messages that do not
have to be handled immediately. There are no
restrictions on the contents of the event procedure when
this technique is used.

In cases where you need to perform more than one type
of subclassing on a window, you will need to use
multiple SubClass controls and set each control’s Type
property to a different type.

UseOnlyXEvent [VB] Property UseOnlyXEvent As Boolean
[C#] bool UseOnlyXEvent

When this property is True, all subclass events will be
forced to the WndMessageX event, including messages
that would normally go to the WndMessage event.
When this property is False, messages are sent to the
appropriate event.

Methods
The dwsbc80.ocx SubClass control includes support for both COM/ActiveX and .NET
development platforms. Some methods are useful or applicable only in the COM/ActiveX
development platform. Only those methods valid in the .NET development platform are
described here.

GetAnsiString [VB] Function GetAnsiString (ByVal Address As

Integer, ByVal Process As Integer) As String
[C#] string GetAnsiString (int Address, int
Process)

This method takes an Ansi string address and the
process ID, and returns the actual string. This allows the
ability to retrieve a string from cross-task processes.

GetUnicodeString [VB] Function GetUnicodeString (ByVal Address
As Integer, ByVal Process As Integer) As
String
[C#] string GetUnicodeString (int Address,
int Process)

This method takes a Unicode string address and the
process ID, and returns the actual string. This allows the
ability to retrieve a string from cross-task processes.

 - 127 -

Events

DelayedEvent [VB] Sub SubClass1_DelayedEvent(ByVal sender As Object, ByVal

e As
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_DelayedEventEvent)
Handles SubClass1.DelayedEvent
[C#] void SubClass1_DelayedEvent(object sender,
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_DelayedEventEvent
e)

The PostEvent property is used to trigger this event. It is typically used to
delay some operation without going through the trouble of setting up a
timer. You may perform any operation during this event. The
DelayedEventEvent field is described as follows:

lvalue (Integer) – Value set into the PostEvent property that triggered this
event.

WndMessage [VB] Sub SubClass1_WndMessage(ByVal sender As Object, ByVal e
As
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageEvent)
Handles SubClass1.WndMessage
[C#] void SubClass1_WndMessage(object sender,
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageEvent e)

This event is triggered for subclassed controls and forms that are in the
same process as the SubClass control. If, however, the UseOnlyXEvent
property is True, this event will NOT be triggered for any subclassed
controls and forms. The WndMessageEvent fields are as follows:

hwnd (Integer) – The window handle.

msg (Integer) – The message number.

wp (Integer) – The wParam parameter.

lp (Integer) – The lParam parameter.

retval (Integer) – The 32 bit value to return to the calling function.

nodef (Short) – Set to True to prevent default message processing.

If the Type property is set to '0 - Pre-Default' (sbcPreDefault), the retval
parameter only returns a value to the calling function if you set the nodef
parameter to non-zero. If you leave the nodef parameter as zero, the default
window function for the window is called and the value that it returns is
passed on to the calling function.

 - 128 -

When the Type property is set to '1 - Post-Default' (sbcPostDefault), the
retval parameter contains the value returned by the default window function
for the window. You can override this return value by changing the value of
the retval parameter and setting the nodef parameter to non-zero.
Remember, the retval parameter will only be returned if the nodef
parameter is set to non-zero (even though it obviously cannot block default
processing that has already occurred).

WndMessageX [VB] Sub SubClass1_WndMessageX(ByVal sender As Object, ByVal
e As
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageXEvent)
Handles SubClass1.WndMessageX
[C#] void SubClass1_WndMessageX(object sender,
AxDesaware.SpyWorks.dwsbcNET._DDwsbcEvents_WndMessageXEvent
e)

This event is triggered for subclassed controls and forms that are NOT in
the same process as the SubClass control. If, however, the UseOnlyXEvent
property is True, this event will be triggered for all subclassed controls and
forms. The WndMessageXEvent fields are as follows:

wnd (Integer) – The window handle.

msg (Integer) – The message number.

wp (Integer) – The wParam parameter.

lp (Integer) – The lParam parameter.

retval (Integer) – The 32 bit value to return to the calling function.

nodef (Short) – Set to True to prevent default message processing.

process (Integer) – The process ID of the message sender.

If the Type property is set to '0 - Pre-Default' (sbcPreDefault), the retval
parameter only returns a value to the calling function if you set the nodef
parameter to non-zero. If you leave the nodef parameter as zero, the default
window function for the window is called and the value that it returns is
passed on to the calling function.

When the Type property is set to '1 - Post-Default' (sbcPostDefault), the
retval parameter contains the value returned by the default window function
for the window. You can override this return value by changing the value of
the retval parameter and setting the nodef parameter to non-zero.
Remember, the retval parameter will only be returned if the nodef
parameter is set to non-zero (even though it obviously cannot block default
processing that has already occurred).

 - 129 -

dwshk80.ocx Reference

Introduction

The dwshk80.ocx file is an ATL based COM/ActiveX control that exposes Windows
hook technology. The documentation for the dwshk80.ocx control will be split into the
keyboard hook control section and a windows hook control section. Although our testing
has found that this control works fine on the Visual Studio .NET platform, Desaware
recommends using the new Desaware.shcomponent.dll component in place of the
previous Subclass and WinHook COM controls for development on the Visual Studio
.NET platform.

Keyboard hook features:
• Implementation of the WH_KEYBOARD and WH_KEYBOARD_LL hook

types.
• Detect and disable special keys. Ability to detect Ctrl+Alt+Del, ability to disable

Ctrl+Esc, Alt+Tab, Alt+Esc, and many other special keys.
• Receive all keystrokes sent to any process. Keystrokes are detected before they

are sent to the application; thus you can even trap special keys such as the enter,
control break, and tab keys.

• Place a system wide keyboard hook. This allows your .NET application to be a
"hotkey" type application that is triggered by a specific key sequence regardless
of which application is active.

Keyboard hook Properties
The dwshk80.ocx keyboard hook control includes support for both COM/ActiveX and
.NET development platforms. Some properties are useful or applicable only in the
COM/ActiveX development platform. Only those properties valid in the .NET
development platform are described here.

KeyArray [VB] ReadOnly Property KeyArray (ByVal KeyIndex

As Short) As Integer
[C#] int get_KeyArray (short KeyIndex)

This property array can be used to read the 32 bit key
values for keys that are currently being intercepted by the
KeyBoard hook control. The key value is specified in the
KeyBoard hook control key value format.

KeyboardEvent [VB] Property KeyboardEvent As
Desaware.SpyWorks.dwshkNET.KeyEventConstants

 - 130 -

[C#]
Desaware.SpyWorks.dwshkNET.KeyEventConstants
KeyboardEvent

Newer versions of this control divide the old KbdHook
event into two separate events: one that detects key up
events, the other that detects key down events. These
events are easier to use and should prove popular for new
applications.

0 - Extended Events (shkKbdExtended) – Enable the two
new events: KeyDownHook and KeyUpHook.

1 - Use KbdHook (shkUseKbdHook) – Use the old
KbdHook event only.

2 - Use low level Hook (shkUseKbdLLHook) – Use the
low level keyboard hook.

KeyboardHook [VB] Property KeyboardHook As
Desaware.SpyWorks.dwshkNET.KeyboardHookConstants
[C#]
Desaware.SpyWorks.dwshkNET.KeyboardHookConstants
KeyboardHook

Enables and disables keyboard hooking by this control, and
determines the scope of the keyboard hook:

0 – Disabled (shkKbdDisabled) – Disable the keyboard
hook for this instance of the control.

1 - This Task (shkKbdThisTask) – Only hook keyboard
messages coming from the process of which the control is a
part.

2 - Entire System (shkKbdEntireSystem) – Hook all
keyboard messages from the entire system.

3 – TaskParam (shkKbdTaskParam) – Hook all keyboard
messages from the process specified in the TaskParam
property. It is not possible to have a different task ID for
the keyboard hook and the windows hook; if a different
task ID is necessary, use two instances of this control.

4 – ThreadParam (shkKbdThreadParam) – Hook all
keyboard messages from the thread specified in the
ThreadParam property. It is not possible to have a different
thread ID for the keyboard hook and the windows hook; if

 - 131 -

a different thread ID is necessary, use two instances of this
control.

KeyCount [VB] ReadOnly Property KeyCount As Short
[C#] short KeyCount [get]

This property can be read to determine the number of keys
that are currently being detected.

KeyIgnoreCapsLock [VB] Property KeyIgnoreCapsLock As Boolean
[C#] bool KeyIgnoreCapsLock

When this property has a value of False, alphabetic
characters are shifted according to the state of the
CapsLock key. Other keys are not affected. When this
property has a value of True, the CapsLock key has no
effect.

Keys [VB] Property Keys As Integer
[C#] int Keys

This 32 bit property is used to determine which keys the
KeyBoard hook control will detect. It can be used in two
ways. At design time, click on the '...' in the property bar to
bring up the Key Select Window which is used to select
keys.
At runtime, setting this property to a key value causes that
key to be added to the filter list of keys that will be
detected. This value is in the KeyBoard hook control’s key
value format specified earlier in this chapter.
If you do not specify a filter list for keys, all keys will be
detected.

The Key Select Window is shown below.

 - 132 -

This window is used to select keys to be intercepted by this
control. The Available list box displays a list of all virtual
keys. Those currently being detected will be listed in the
Detect list box.
Entries in the Detect list box may be preceded by one or
more of the letter 'S', 'C' and 'A' indicating the state of the
Shift, Ctrl and Alt keys that are required for detection.
The Add button will add a key to the Detect list box based
on the virtual key selected in the Available list box and the
settings of the Shift, Control and Alt checkboxes.
You can remove any key from the Detect list box using the
Remove control.
Entries in both the Detect and Available list boxes are
sorted in alphabetical order.

KeyViewPeeked [VB] Property KeyViewPeeked As Boolean
[C#] bool KeyViewPeeked

Keyboard hook events are triggered any time the system
reads a key event from the system queue. However, reading
an event does not mean that the event is always removed
from the system queue. In some cases a key event is
“peeked” - previewed, and it remains in the queue. This
property determines whether you want to see these peeked
keys. Normally, you will want to leave this property False.

KeyboardNotify [VB] Property KeyboardNotify As
Desaware.SpyWorks.dwshkNET.NotifyConstants
[C#] Desaware.SpyWorks.dwshkNET.NotifyConstants
KeyboardNotify

This property determines when the KeyBoard hook event is

 - 133 -

triggered.

0 - When Hooked (shkWhenHooked) – The KeyBoard
hook event is triggered as soon as the keystroke occurs. In
this case you have the option of discarding the character so
that it will not be seen by the system. When this type of
hook is in effect, you should abide by the same limitations
that apply when subclassing windows messages - minimize
the amount of code in the event and do not change focus,
load or unload controls or load or unload applications.
1 – Posted (shkPosted) – The keystroke event is posted so
that the KeyBoard hook event will be triggered during the
course of normal windows processing. This method is ideal
for detecting the occurrence of keyboard events when
immediate processing is not necessary.

TaskParam [VB] Property TaskParam As Integer
[C#] int TaskParam

This 32 bit property only has an effect on the keyboard
hook when the KeyboardHook property is set to '3 -
TaskParam'. In this case, only keyboard messages going to
Windows belonging to the process specified by TaskParam
will be detected. Be sure to use a task/process handle, not
an instance handle, to set this property.

ThreadParam [VB] Property ThreadParam As Integer
[C#] int ThreadParam

This 32 bit property only has an effect on the keyboard
hook when the KeyboardHook property is set to '4 -
ThreadParam'. In this case, only keyboard messages going
to Windows belonging to the thread specified by
ThreadParam will be detected.

Keyboard hook Methods

ClearKey [VB] Sub ClearKey (ByVal KeyVal As Integer)

[C#] void ClearKey (int KeyVal)

At runtime, calling this method with the key value of a
key causes that key to be removed from the filter list of
keys that will be detected. The key value is specified in
the Keyboard Hook key value format.

 - 134 -

Keyboard hook Events

KbdHook [VB] WinHook1_KbdHook(ByVal sender As Object, ByVal e As

AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KbdHookEvent) Handles
WinHook1.KbdHook
[C#] WinHook1_KbdHook(object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KbdHookEvent e)

This event occurs when a keystroke event occurs and the KeyboardEvent
property is set to '1 – Use KbdHook'. The KbdHookEvent fields are as follows:

keycode (Integer) – specifies the virtual-key code of the key that generated the
keystroke message.

keystate (Integer) – defined as follows:

Bit 0 -– 15 number of repetitions of this key
Bit 16 - 23 hardware dependent scan code.
Bit 24 = 1 if this is an extended key (function key or on the numeric keypad)
Bit 29 = 1 if the ALT key is down
Bit 30 = 1 if the key was previously down, 0 if it was up
Bit 31 = 1 if the key is being released, 0 if pressed

shiftstate (Short) – this bit field corresponds to the modifier key as follows:

Bit 0 = 1 The shift key is down.
Bit 1 = 1 The control key is down.
Bit 2 = 1 The alt key is down

discard (Short) – If the KeyboardNotify property is set to '0 - When Hooked',
setting this field to non-zero will cause the keystroke to be discarded before it is
processed by Windows.

KeyDownHook [VB] WinHook1_KeyDownHook(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyDownHookEvent)
Handles WinHook1.KeyDownHook
[C#] WinHook1_KeyDownHook(object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyDownHookEvent e)

This event occurs when a keyboard event occurs in which the key is pressed and
the KeyboardEvent property is set to '0 – Extended Events'. The
KeyDownHookEvent fields are as follows:

keycode (Integer) – specifies the virtual-key code of the key that generated the
keystroke message.

 - 135 -

keystate (Short) – defined as follows:

Bit 0 - 7 the hardware dependent scan code.
Bit 8 = 1 if this is an extended key (function key or on the numeric keypad)
Bit 9 = 1 if this key is being “peeked” (i.e. this event was not removed
from the system queue). This is only possible if the KeyViewPeeked property is
set to True.
Bit 13 = 1 if the ALT key is down
Bit 14 = 1 if the key was previously down, 0 if it was up.
Bit 15 = 1 if the key is being released, 0 if pressed.

shiftstate (Short) – this bit field corresponds to the modifier key as follows:

Bit 0 = 1 The shift key is down.
Bit 1 = 1 The control key is down.
Bit 2 = 1 The alt key is down

discard (Short) – If the KeyboardNotify property is set to '0 - When Hooked',
setting this field to non-zero will cause the keystroke to be discarded before it is
processed by Windows.

repetitions (Short) – this field is the repeat count for this key event.

processid (Integer) – this field is the process id of the process receiving the keys
or zero to indicate the current process.

KeyUpHook [VB] WinHook1_KeyUpHook(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyUpHookEvent)Handles
WinHook1.KeyUpHook
[C#] WinHook1_KeyUpHook (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyUpHookEvent e)

This event occurs when a keyboard event occurs in which the key is released and
the KeyboardEvent property is set to '0 – Extended Events'.
The KeyUpHookEvent fields are identical to those of the KeyDownHook event.

KeyDownHookLL [VB] WinHook1_KeyDownHookLL (ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyDownHookLLEvent)
Handles WinHook1.KeyDownHookLL
 [C#] WinHook1_KeyDownHookLL(object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyDownHookLLEvent e)

This event occurs when a keyboard event occurs in which the key is pressed and
the KeyboardEvent property is set to '2 - Use low level Hook'. The
KeyDownHookLLEvent fields are as follows:

keymessage (Integer) – specifies the identifier of the keyboard message - one of
the following KeyboardMessages fields: WM_KEYDOWN, WM_KEYUP,

 - 136 -

WM_SYSKEYDOWN, or WM_SYSKEYUP

keycode (Integer) – specifies the virtual-key code of the key that generated the
keystroke message.

scancode (Integer) – Specifies a hardware scan code for the key that generated
the keystroke message.

flags (Integer) – this field is defined as follows:

Bit 0 = 1 if the key is an extended key, such as a function key or a key on
the numeric keypad. The IsExtended function can be used to test this bit.
Bit 4 = 1 if the key was injected. The IsInjected function can be used to test
this bit.
Bit 5 = 1 if the ALT key is pressed. The IsAltPressed function can be used
to test this bit. NOTE that from our testing, this bit does not seem to reflect the
state of the ALT key accurately some of the time. We suggest that you use the
shiftstate field instead to retrieve the state of the ALT key.
Bit 7 = 1 if the key is being released, 0 if pressed. The IsKeyRelease
function can be used to test this bit.

time (Integer) – Specifies the time stamp for this message.

shiftstate (Short) – this bit field corresponds to the modifier key as follows:

Bit 0 = 1 The shift key is down.
Bit 1 = 1 The control key is down.
Bit 2 = 1 The alt key is down.

processid (Integer) – this field is the process id of the process receiving the keys
or zero to indicate the current process.

discard (Short) – If the KeyboardNotify property is set to '0 - When Hooked',
setting this field to non-zero will cause the keystroke to be discarded before it is
processed by Windows.

ExtraInfo (Integer) – Specifies extra information associated with this key.

KeyUpHookLL [VB] WinHook1_KeyUpHookLL (ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyUpHookLLEvent)
Handles WinHook1.KeyUpHookLL
 [C#] WinHook1_KeyUpHookLL(object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_KeyUpHookLLEvent e)

This event occurs when a keyboard event occurs in which the key is released and
the KeyboardEvent property is set to '2 - Use low level Hook'. The
KeyUpHookLLEvent fields are identical to those of the

 - 137 -

KeyDownHookLLEvent.

Windows hook features:
• Implementation of Windows hooks including WH_MOUSE, WH_MOUSE_LL,

WH_GETMESSAGE, WH_MSGFILTER, WH_SYSMSGFILTER,
WH_JOURNALRECORD, WH_JOURNALPLAYBACK, WH_CBT,
WH_CALLWNDPROC, WH_CALLWNDPROCRET, WH_SHELL, and
WH_FOREGROUNDIDLE. Allows interception of messages going to many
controls without subclassing each one.

• Full control over scope of message detection - per form, per process, per thread,
or systemwide.

• Specify exactly which messages to detect - this minimizes overhead to provide the
fastest possible performance.

• Detect registered windows messages.
• Detect messages as they occur, or post them for later processing.
• Ability to change or discard messages (depending on the hook and message).
• JournalPlayback allows simulation of mouse or keyboard activity.

Windows hook Properties
The dwshk80.ocx Windows hook control includes support for both COM/ActiveX and
.NET development platforms. Some properties are useful or applicable only in the
COM/ActiveX development platform. Only those properties valid in the .NET
development platform are described here.

ClearMessage [VB] WriteOnly Property ClearMessage As

Integer
[C#] int ClearMessage [set]

At runtime, setting this property to the value of a
message number causes that message number to be
removed from the filter list of messages that will be
detected.

CrossTaskTimeout [VB] Property CrossTaskTimeout As Integer
[C#] int CrossTaskTimeout

This property contains the timeout value when
performing cross-process subclassing or hooking. When
doing cross-process subclassing or hooking, it is quite
possible for an application to freeze up the entire
system. The Windows hook control has a watchdog
timer during hooking that, when it times out, will
interrupt the hooking. This property sets the timeout
value. Be aware that processing time within the

 - 138 -

Windows hook events count toward the timeout time, so
if there are any breakpoints in the hook events, set this
property to a very high value.

CurrentProcessFlag [VB] ReadOnly Property CurrentProcessFlag As
Integer
[C#] int CurrentProcessFlag [get]

This property has several different meanings, depending
upon which message hook is being processed. During
the handling of the WH_CALLWNDPROC and
WH_CALLWNDPROCRET message hooks, this
property can be read to determine if the message was
intercepted from another process or not: the property
will be non-zero if the message was intercepted from
another process.
During the handling of the WH_GETMESSAGE
message hooks, the CurrentProcessFlag property can be
read to determine if the message was actually removed
from the queue, or just peeked without removal. If this
property is set to PM_REMOVE, then the message was
actually removed from the queue; if this property is set
to PM_NOREMOVE, then the message was peeked but
not removed from the queue.

HookEnabled [VB] Property HookEnabled As Boolean
[C#] bool HookEnabled

Enables or disables the Windows hook. Has no effect
on the keyboard hook.

HookType [VB] Property HookType As
Desaware.SpyWorks.dwshkNET.HookTypeConstants
[C#]
Desaware.SpyWorks.dwshkNET.HookTypeConstants
HookType

Windows provides a number of different types of
windows hooks. The dwshk80.ocx control supports
thirteen types of hooks. Two types, the keyboard hook
and low-level keyboard hook, are supported by the
keyboard hook section of the dwshk80.ocx file. Each
type of hook detects a different subset of messages and
different types. You will probably want to experiment to
determine which hook type is appropriate for your
needs.
Keep in mind that different hook types cause different
events to be triggered - be sure you use the correct event

 - 139 -

for each hook type!
The type of hook to use is determined by the HookType
property as follows:

0 - WH_GETMESSAGE (shkGetMessage) –
Implements a WH_GETMESSAGE hook. This hook is
triggered any time a Windows function called
GetMessage is called during the main message handling
loop of a Windows application. It does not detect every
message received by a window function, but it is very
efficient. The WndMessage event is triggered when a
message is detected by this hook.

1 - WH_MOUSE (shkMouse) – Implements a
WH_MOUSE hook. This hook is triggered by mouse
events. The MouseProc event is triggered when a mouse
message is detected by this hook.

2 - WH_MESSAGEFILTER (shkMessageProc) –
Implements a WH_MSGFILTER hook. This hook is
triggered any time a non-system message is sent to a
dialog box, message box or menu. The MessageProc
event is triggered when a message is detected by this
hook.

3 - WH_SYSMESSAGEFILTER (shkSysMessageProc)
– Implements a WH_SYSMSGFILTER hook. This hook
is triggered any time a system message is sent to a
dialog box, message box or menu. The MessageProc
event is triggered when a message is detected by this
hook.

4 - WH_CALLWNDPROC (shkWindowProc) –
Implements a WH_CALLWNDPROC hook. This hook
is triggered any time a message is sent to a window
function. This hook type does detect every windows
message except for internal Visual Basic messages.
Even with the advanced filtering used by SpyWorks, use
of this hook can impact system performance and should
be avoided if possible. The WndMessage event is
triggered when a message is detected by this hook.

5 - WH_CBT (shkCBTProc) – Implements a WH_CBT
hook. This hook is used to implement computer based
training applications, providing information on a variety
of windows events. The CBTProc event is triggered

 - 140 -

when a message is detected by this hook.

6 - WH_JOURNALPLAYBACK (shkJournalPlayback)
– Implements a WH_JOURNALPLAYBACK hook.
This hook is used to simulate keyboard and mouse
events to the system, typically after being recorded
using the JournalRecord hook. The JournalPlayProc
event is triggered when a message is detected by this
hook.

7 - WH_JOURNALRECORD (shkJournalRecord) –
Implements a WH_JOURNALRECORD hook. This
hook is used to record keyboard and mouse events on
the system, typically to implement a macro recorder.
The JournalRecordProc event is triggered when a
message is detected by this hook.

8 - WH_SHELL (shkShell) – Implements a
WH_SHELL hook. This hook is triggered when the
shell application is about to be activated and when a top-
level window is created or destroyed.. The ShellProc
event is triggered when a message is detected by this
hook.

9 - WH_CALLWNDPROCRET (shkCallWndProcRet)
– Implements a WH_CALLWNDPROCREThook. This
hook is triggered any time a window function returns
from a message. This hook type does detect every
windows message except for internal Visual Basic
messages. Even with the advanced filtering used by
SpyWorks, use of this hook can impact system
performance and should be avoided if possible. This
hook is currently only supported under Windows 95.
The WndMessageRet event is triggered when a message
is detected by this hook.

10 - WH_ MOUSE_LL (shkMouseLL) – Implements a
WH_MOUSE_LL hook. This hook is triggered by
mouse events. The MouseProcLL event is triggered
when a mouse message is detected by this hook.

11 - WH_FOREGROUNDIDLE (shkForegroundIdle) –
Implements a WH_FOREGROUNDIDLE hook. This
hook is used to detect when the foreground thread is
about to become idle. The ForegroundIdleProc event is
triggered when a message is detected by this hook.

 - 141 -

HwndParam [VB] Property HwndParam As Integer

[C#] int HwndParam

This property only has an effect when the Monitor
property is set to '2 - HwndParam', or '3 - HwndParam's
Kids'. When set at runtime to a window handle, only
messages sent to this window and its descendants, or
just to its descendants (depending on the Monitor
property), will be detected.

MessageArray [VB] Function get_MessageArray (ByVal index
As Short) As Integer
[C#] int get_MessageArray (short index)

This property array can be used to read the message
numbers that are currently being intercepted by the
Windows hook control.

MessageCount [VB] ReadOnly Property MessageCount As Short
[C#] short MessageCount [get]

This property can be read to determine the number of
messages that are currently being detected, not including
registered messages.

Messages [VB] Property Messages As Integer
[C#] int Messages

This property is used to determine which messages the
Windows hook control will detect. It can be used in two
ways. At design time, click on the '...' in the property bar
to bring up the Windows hook control’s Message List
form which is used to select messages.
At runtime, setting this property to the value of a
message number causes that message number to be
added to the filter list of messages that will be detected.
You can use the MessageArray and MessageCount
properties to determine which messages have been set
for a Windows hook control.
Only messages that are specified will be detected. If no
messages are specified, the Windows hook control will
detect all messages.

 - 142 -

Refer to the RegMessage properties for information on
detecting registered windows messages.
The Message List form appears when you press the '...'
button on the property window for the Message
property. Messages are divided into groups as defined
in the SpyWorks.ini file. You can use the Message
Groups combo box to select the group from which to
select messages.
The available messages for each group appears in the
Available Messages list box. You can select a message
by clicking on the Add button when the message is
highlighted, or double clicking on the message.
The Remove button can be used to cancel detection of a
message.
If a message is not already defined by the system, you
have two choices. You can add the message to the
SpyWorks.ini file, or enter the message value directly
into the user defined edit box. This edit box accepts the
standard &H or 0X format to specify hexadecimal
notation, or you can leave the "Default Hex" check box
checked, in which case your entry is assumed to be
always in hex.
In some cases a message number is used by multiple
groups. In this case, the Message Select dialog box will
use the most recently selected group to determine the
name of the message. Messages are saved internally by
value, not name.

Monitor [VB] Property Monitor As
Desaware.SpyWorks.dwshkNET.MonitorConstants
[C#]
Desaware.SpyWorks.dwshkNET.MonitorConstants
Monitor

 - 143 -

Windows hooks are designed to intercept messages on a
global basis. The Monitor property provides a degree of
filtering to help you limit which messages to detect in
order to improve system efficiency. The values of this
property are as follows:

0 - This Form (shkThisForm) – Only messages going to
the form that contains the Windows hook control will be
detected. Messages will be detected for the form, and for
all controls on the form (except, of course, for Graphical
controls which are not compatible with Windows
hooks).

1 - My Siblings (shkMySiblings) – Only messages
going to child controls of the form that contains the
Windows hook control will be detected. Messages will
not be detected for the form itself. Messages will not be
detected for child controls that are Graphical controls as
they are not compatible with Windows hooks.

2 – HwndParam (shkHwndParam) – Only messages
going to the form whose window handle is set into the
HwndParam property will be detected. Messages will be
detected for the window, and for all child windows and
controls on the window (except, of course, for Graphical
controls which are not compatible with Windows
hooks).

3 - HwndParam's Kids (shkHwndKids) – Only messages
going to children of the window whose handle is set into
the HwndParam property will be detected. Messages
will not be detected for the window itself. Messages will
not be detected for child controls that are Graphical
controls as they are not compatible with Windows
hooks.

4 - This Task (shkThisTask) – Only messages going to
windows in the process that owns this Windows hook
control will be detected.

5 – TaskParam (shkTaskParam) – Only messages going
to windows owned by the process whose process ID is
set into the TaskParam property will be detected. It is
not possible to have a different task ID for the keyboard
hook and the windows hook; if a different task ID is

 - 144 -

necessary, use two instances of this control.

6 - Entire System (shkEntireSystem) – Messages will be
detected for all processes.

7 - This Thread (shkThisThread) – Only messages going
to windows in the thread that owns this Windows hook
control will be detected.

8 – ThreadParam (shkThreadParam) – Only messages
going to windows owned by the thread whose thread ID
is set into the ThreadParam property will be detected. It
is not possible to have a different thread ID for the
keyboard hook and the windows hook; if a different
thread ID is necessary, use two instances of this control.

Notify [VB] Property Notify As
Desaware.SpyWorks.dwshkNET.NotifyConstants
[C#]
Desaware.SpyWorks.dwshkNET.NotifyConstants
Notify [set]

This property determines when a message hook event is
triggered. The values of this property are as follows:

0 - When Hooked (shkWhenHooked) – The
WndMessage, MessageProc and MouseProc events are
triggered as soon as a message is detected. In this case
you have the option of discarding the message so that it
will not be seen by the system. When this type of hook
is in effect, you should abide by the restrictions
described in the section Cautions on Using Subclassing
in the dwsbc80.ocx control description.

1 – Posted (shkPosted) – The event is posted so that the
WndMessage, MessageProc and MouseProc events will
be triggered during the course of normal windows
processing. This method is ideal for detecting the
occurrence of messages when immediate processing is
not necessary.

PostEvent [VB] WriteOnly Property PostEvent As Integer
[C#] int PostEvent [set]

Sometimes you will run into a situation where you want
to do something "later", but don't want to go through the
hassle of setting up a timer control (not to mention
dealing with the delay inherent in setting a timer delay).

 - 145 -

The PostEvent property can be used to place an event in
the message processing queue that will occur during the
course of normal event processing. The long value set
into this property will be passed as a parameter to the
DelayedEvent event.
This property is especially valuable to divide the
processing of a message into two parts - the part that
needs to be processed immediately with the message (at
which time there may be limits on the allowed
operations), and the part of processing that can be
deferred.

RegMessage1 to
RegMessage5

[VB] Property RegMessage1 As String
[C#] string RegMessage1

Most messages dealt with in Windows are specified by
constant values. In some cases, however, messages are
known by name and their value can change each time
the application is run. These are known as registered
messages.
Each Windows hook control can detect up to five
registered messages. Simply set the contents of the
RegMessage1 through RegMessage5 properties to the
message name. This property can be set at either runtime
or design time.

RegMessageNum [VB] Function get_RegMessageNum (ByVal index
As Short) As Integer
[C#] int get_RegMessageNum (short index)

This array gives the message numbers associated with
the registered messages specified in the RegMessage
properties. The RegMessage properties are specified by
a string containing the name of the registered message to
hook, while the RegMessageNum property array will
give the actual message number that is associated with
the registered message.

TaskParam [VB] Property TaskParam As Integer
[C#] int TaskParam

This property only has an effect on the Windows hook
when the Monitor property is set to '5 - TaskParam'. In
this case, only messages going to Windows belonging to
the process specified by TaskParam will be detected.
This property is set at runtime only. Be sure to use a
process handle, not an instance handle, to set this
property.

 - 146 -

ThreadParam [VB] Property ThreadParam As Integer

[C#] int ThreadParam

This property only has an effect on the Windows hook
when the Monitor property is set to '8 - ThreadParam'. In
this case, only messages going to Windows belonging to
the thread specified by ThreadParam will be detected.

Windows hook Events
You should be careful of what code you place within these events - especially when the
Notify property is set to '0 - When Hooked'. Follow the information in the Cautions on
Using Subclassing section of the dwsbc80.ocx control description.

CBTProc [VB] Sub WinHook1_CBTProc(ByVal sender As Object, ByVal e As

AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_CBTProcEvent) Handles
WinHook1.CBTProc
[C#] void WinHook1_CBTProc(object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_CBTProcEvent e)

This event is triggered for messages detected when the Monitor property is set to '5
- CBTProc'. The CBTProcEvent fields are as follows:

code (Integer) – Refer to your Windows API documentation for the CBTProc
function for information on this parameter.

wp (Integer) – A 32 bit field depending on the code field.

lp (Integer) – A 32 bit field depending on the code field.

nodef (Short) – Refer to Use of the nodef parameter. In addition, the nodef
parameter for this type of hook is only applicable to certain code values.

An in-depth discussion of CBT hooks is beyond the scope of this manual. It is
assumed that anyone wishing to use this documentation has access to the Windows
software development kit or Developer’s Network CD-ROM.

The lp parameter is frequently a pointer to a structure (whether this is the case, and
the type of structure, depends on the code). The Windows hook control is aware of
the types of structures supported, and ensures that the structure and contents are
copied into the current memory address space - an important issue under Windows
NT/2000/XP where address pointers may not be valid when moved between
processes.

DelayedEvent [VB] Sub WinHook1_DelayedEvent(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_DelayedEventEvent)

 - 147 -

Handles WinHook1.DelayedEvent
[C#] void WinHook1_DelayedEvent(object sender,
AxDesaware.SpyWorks.dwshkNET._DdwshkEvents_DelayedEventEvent e)

The PostEvent property is used to trigger this event. It is typically used to delay
some operation without going through the trouble of setting up a timer. The
CBTProcEvent fields are as follows:

lvalue (Integer) – Contains the value set into the PostEvent property that triggered
this event.

You may perform any operation during this event.

JournalPlayProc [VB] Sub WinHook1_JournalPlayProc(ByVal sender As Object, ByVal e
As AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_JournalPlayProcEvent)
Handles WinHook1.JournalPlayProc
[C#] void WinHook1_JournalPlayProc (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_JournalPlayProcEvent e)

This event is triggered for messages detected when the Monitor property is set to '6
- JournalPlayback'. The JournalPlayProcEvent fields are as follows:

code (Integer) – Refer to your Windows API documentation for the
JournalPlaybackProc function for information on this parameter.

msg (Integer) – The keyboard or mouse message to place in the system queue.

paramL (Integer) – A parameter depending on the message.

paramH (Integer) – A second parameter depending on the message.

wnd (Integer) – The window handle.

mtime (Integer) – A 32 bit time stamp for the message.

delay (Integer) – A 32 bit delay in milliseconds until the message will be placed in
the system queue. Zero for no delay (default).

An in-depth discussion of Journal hooks is beyond the scope of this manual. It is
assumed that anyone wishing to use this event has access to the Windows software
development kit or Microsoft Developer’s Network CD-ROM.

JournalRecordProc [VB] Sub WinHook1_JournalRecordProc(ByVal sender As Object, ByVal e
As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_JournalRecordProcEvent)
Handles WinHook1.JournalRecordProc
[C#] void WinHook1_JournalRecordProc (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_ JournalRecordProcEvent
e)

 - 148 -

This event is triggered for messages detected when the Monitor property is set to '7
- JournalRecord'. The JournalRecordProcEvent fields are as follows:

code (Integer) – Refer to your Windows API documentation for the
JournalPlaybackProc function for information on this parameter.

msg (Integer) – The keyboard or mouse message to place in the system queue.

paramL (Integer) – A parameter depending on the message.

paramH (Integer) – A second parameter depending on the message.

wnd (Integer) – The window handle.

mtime (Integer) – A 32 bit time stamp indicating when the message was received.

nodef (Short) – Refer to the Use of the Nodef Parameter section.

An in-depth discussion of Journal hooks is beyond the scope of this manual. It is
assumed that anyone wishing to use this event has access to the Windows software
development kit or Microsoft Developer’s Network CD-ROM.

MessageProc [VB] Sub WinHook1_MessageProc(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MessageProcEvent)
Handles WinHook1.MessageProc
[C#] void WinHook1_MessageProc (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MessageProcEvent e)

This event is triggered for messages detected when the Monitor property is set to '2
- MessageProc' or '3 - SysMessageProc'. The MessageProcEvent fields are as
follows:

code (Integer) – Refer to your Windows API documentation for the
JournalPlaybackProc function for information on this parameter.

src (Short) – 0 if the message is inside a dialog box or message box.2 if the
message is inside a menu.

wnd (Integer) – The window handle.

msg (Integer) – The message number.

wp (Integer) – The wParam parameter.

lp (Integer) – The lParam parameter.

 - 149 -

nodef (Short) – Refer to the Use of the nodef parameter section.

nodef is only valid when the Notify property is set to '0 - When Hooked'.

MouseProc [VB] Sub WinHook1_MouseProc(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MouseProcEvent) Handles
WinHook1.MouseProc
[C#] void WinHook1_MouseProc (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MouseProcEvent e)

This event is triggered for messages detected when the Monitor property is set to '1
- MouseProc'. The MouseProcEvent fields are as follows:

wnd (Integer) – The window handle.

msg (Integer) – The message number.

X (Integer) – The x location of the cursor in screen coordinates.

Y (Integer) – The y location of the cursor in screen coordinates.

hitcode (Integer) – A hit test code identifying the type of screen object at the
position indicated. Refer to your Windows API reference or the on-line help for a
list of these codes.

peek (Short) – A value when non zero indicates that this message has been detected
during a PeekMessage function call in which messages are not being removed (this
means you will probably get duplicates of this message).

nodef (Short) – Refer to the Use of the nodef parameter section .

nodef is only valid when the Notify property is set to '0 - When Hooked'.

MouseProcLL [VB] Sub WinHook1_MouseProcLL(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MouseProcLLEvent)
Handles WinHook1.MouseProcLL
[C#] void WinHook1_MouseProcLL (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_MouseProcLLEvent e)

This event is triggered for messages detected when the Monitor property is set to
'10 - MouseProcLL'. The MouseProcLLEvent fields are as follows:

msg (Integer) – The message number.

X (Integer) – The x location of the cursor in screen coordinates.

Y (Integer) – The y location of the cursor in screen coordinates.

 - 150 -

mousedata (Integer) – Contains information on the mouse wheel or x button.

flags (Integer) – Bit field that specifies the event-injected flag. Currently, Bit 0 is
set if this message was injected.

Time (Integer) – Time stamp for this message.

Extrainfo (Integer) – Specifies extra information associated with the message.

ShellProc [VB] Sub WinHook1_ShellProc(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_ShellProcEvent) Handles
WinHook1.ShellProc
[C#] void WinHook1_ShellProc (object sender,
AxDesaware.SpyWorks.dwshkNET._DdwshkEvents_ShellProcEvent e)

This event is triggered for messages detected when the HookType property is set to
'8 - Shell'. The ShellProcEvent fields are as follows:

code (Integer) – Refer to your Windows API documentation for the ShellProc
function for information on this parameter.

wp (Integer) – The wParam parameter.

lp (Integer) – The lParam parameter.

nodef (Short) – Refer to the Use of the nodef parameter section.

WndMessage [VB] Sub WinHook1_WndMessage(ByVal sender As Object, ByVal e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_WndMessageEvent) Handles
WinHook1.WndMessage
[C#] void WinHook1_WndMessage (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_WndMessageEvent e)

This event is triggered for messages detected when the HookType property is set to
'0 - GetMessage' or '4 - WindowProc'. The WndMessageEvent fields are as
follows:

wnd (Integer) – The window handle.

msg (Integer) – The message number.

wp (Integer) – The wParam parameter.

lp (Integer) – The lParam parameter.

nodef (Short) – Refer to the Use of the nodef parameter section.

nodef is only valid when the Notify property is set to '0 - When Hooked'.

 - 151 -

WndMessageRet [VB] Sub WinHook1_WndMessageRet(ByVal sender As Object, ByVal e As

AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_WndMessageRetEvent)
Handles WinHook1.WndMessageRet
[C#] void WinHook1_WndMessageRet (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_WndMessageRetEvent e)

This event is triggered for messages detected when the HookType property is set to
'9 - WindowProcRet'. The WndMessageRetEvent fields are as follows:

wnd (Integer) – The window handle.

msg (Integer) – The message number.

wp (Integer) – The wParam parameter.

lp (Integer) – The lParam parameter.

retval (Integer) – The return value parameter.

nodef (Short) – Refer to the Use of the nodef parameter section.

nodef is only valid when the Notify property is set to '0 - When Hooked'.

ForegroundIdleProc [VB] Sub WinHook1_ForegroundIdleProc(ByVal sender As Object, ByVal
e As
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_ForegroundIdleProcEvent)
Handles WinHook1.ForegroundIdleProc
[C#] void WinHook1_ForegroundIdleProc (object sender,
AxDesaware.SpyWorks.dwshkNET._DDwshkEvents_ForegroundIdleProcEvent
e)

This event is triggered for messages detected when the HookType property is set to
'11 - ForegroundIdleProc '. The ForegroundIdleProcEvent fields are as follows:

nodef (Short) – Refer to the Use of the nodef parameter section.

nodef is only valid when the Notify property is set to '0 - When Hooked'.

.NET samples
SpyWorks samples are provided to demonstrate different functionality of SpyWorks
technology. But, they are also provided for educational purposes. We hope that you’ll be
able to learn and benefit from the introduction of many advanced coding techniques
found in our samples. In our samples, we attempt to write our code in compliance with
Microsoft recommended coding practices. But, .NET is just beginning to evolve and this

 - 152 -

may be a moving target as new coding practices may be introduced. We would like to
have your feedback regarding which language you are using and which language you
would prefer to have the sample code written in. We are still in the early stages of
migrating to and learning .NET. If there are particular samples using some of the
SpyWorks components or functions that you would like to see, please submit a request to
support@desaware.com. Please include a detail description along with your contact
information.

Differences between C# and Visual Basic .NET sample projects
In most cases, the Visual Basic .NET project was written first, then the C# project was
written based on the Visual Basic .NET project. Visual Basic .NET specific functions are
not used in favor of .NET equivalent namespaces when possible so that the code base
between the two languages will be as similar as possible, making it easier to read the
other language.

• BrowseFolder

o Demonstrates how to use the shell’s Browse Folder. As far as we can tell,
there is no equivalent Browse Folder control or object in .NET.

 ClipBoard

o Demonstrates how to use .NET native subclassing to subclass the

clipboard to detect when new data in available on the clipboard.

 ControlEsc

o Demonstrates how to use SpyWorks Keyboard Hook to disable
Control+Esc, Alt+Tab, and other system keys. Also demonstrates how to
detect (but not disable) the Control+Alt+Del key.

 DeskTop

o Demonstrates how to use SpyWorks Subclassing to subclass the System

Desktop. Also demonstrates the use of the SpyWorks cross process
functions.

 DetectNewWindows

o Demonstrates how to use SpyWorks Windows Hook to detect newly

created Windows for the entire system.

 EnumWin

 - 153 -

o Demonstrates how to use .NET delegates as callback functions to
enumerate all top level Windows on the system.

 ForeGroundIdle

o Demonstrates how to use the ForeGroundIdle hook type to detect when

your foreground thread is idle.

 Function Export

o VB6 Export Functions

 Demonstrates how to call Visual Basic 6.0 export functions from
.NET. Demonstrates how to marshal parameters and structures
passed to the functions. This sample is also helpful for calling
other Windows API functions as it demonstrates how to Marshall
parameters and using Platform Invoke.

o .NET Export Functions

 Demonstrates how to call .NET export functions from .NET and

Visual Basic 6.0 applications. Demonstrates how to marshal
parameters and structures passed to the functions and how to return
Visual Basic 6.0 String data types (if your target caller is Visual
Basic 6.0).

 KeyHook

o Demonstrates how to use the SpyWorks Windows Hook to detect hot

keys.

 Monitor

o Demonstrates how to use the SpyWorks Windows Hook to detect
keyboard and mouse activity for the entire system.

 MousePt

o Demonstrates how to use the SpyWorks Windows Hook to track mouse

movement to identify and display information on the Window the mouse
is over.

 NativeSubclassing

 - 154 -

o Demonstrates how to use .NET native subclassing to subclass the combo
box control to detect when the combo has closed (CloseUp), and to
subclass a text box to disable the default context menu.

 SetForeground

o Demonstrates how to use the SpyWorks functions to force a Window to

the foreground even if the process that Window belongs to is not the
active process.

 ShellHook

o Demonstrates how to use the Shell hook type to detect a variety of events

related to Windows.

 SpyWin

o Demonstrates how to enumerate all the Windows in the System. Organizes
Windows by Process, Threads, and Parent Windows. Demonstrates how to
retrieve additional information on a specified Window or search for an
existing Window.

 TitleBar

o Demonstrates how to use .NET native subclassing and how to call

Windows API functions from .NET to custom draw a titlebar for your
form.

 XTaskEditGetLine

o Demonstrates how to use the SpyWorks functions to retrieve a line of text

from a multi-line edit control located in another process.

 XTaskRichTextGet

o Demonstrates how to use the SpyWorks functions to retrieve text from a
rich text control located in another process.

 XTaskSubclass

o Demonstrates how to use Windows API functions to add a new menu item

to another application and SpyWorks Subclassing to detect when that
menu item has been selected.

 - 155 -

	Introduction
	New for version 8.0
	SpyWorks and Visual Studio .NET
	Subclassing and Hooking
	Function Export
	Known issues with Visual Studio .NET and other general comme

	File Descriptions
	Compatibility Issues
	Migrating SpyWorks 7.1 Projects to SpyWorks 8.0
	Migrating Visual Basic 6.0 Projects to .NET
	Learning .NET
	Migrating Visual Basic 6.0 projects
	Deciding on which Subclass and WinHook component to use in .
	Migrating SpyWorks Subclass and WinHook ATL based ActiveX co

	Using SpyWorks (Please Read!)
	Customer Support
	Register! Register! Register!

	SpyWorks Concepts: Subclassing
	Introduction to Subclassing
	Windows Functions

	How might you use subclassing?
	Cautions on Using Subclassing
	Delayed Events - Posting an Event to Yourself
	Using the Desaware Subclasser
	Subclassing and spyware
	Using the Desaware.SpyWorksDotNet Subclasser object
	Using the dwsbc80.ocx control
	Subclassing Multiple Windows with the dwsbc80.ocx control

	CrossProcess Issues
	Process Spaces

	SpyWorks Concepts: Windows Hooks
	Types of hooks
	Should you use hooks or subclassing?
	You are only interested in messages going to one or two wind
	You are interested in monitoring messages to a large group o
	You are interested in responding to particular messages rega
	In general:

	Using the Desaware Windows Hook
	Keyboard hooks and spyware
	Using the Desaware.SpyWorksDotNet KeyHook object for Keyboar
	Setting up the KeyHook object for Keyboard Hooks
	Discarding keystrokes

	Using the dwshk80.ocx control for Keyboard Hooks
	Setting up the dwshk80.ocx control for Keyboard Hooks
	Key Value Format
	Discarding keystrokes

	Using the Desaware.SpyWorksDotNet WinHook object for Windows
	Setting up the WinHook object for Windows Hooks

	Using the dwshk80.ocx control for Windows Hooks
	Setting up the dwshk80.ocx control for Windows Hooks
	Use of the nodef Parameter for the dwshk80.ocx control

	WinHook - Use of the nodef event parameter

	Hook Examples
	For further information on Hooks

	SpyWorks Concepts: dwshengine80.dll function library
	dwshengine80.dll function reference
	dwCopyData
	dwGetAddressForObject
	dwXAllocateDataFrom
	dwXFreeDataFrom
	dwXCopyAnsiStringFrom
	dwXCopyUnicodeStringFrom
	dwXCopyDataTo
	dwXCopyDataFrom
	dwXGetModuleFileName
	dwXGetEditLine
	dwXSetForegroundWindow

	Application Note: Using Cross Process Memory Access with Spy
	Using the EM_GETTEXTRANGE message
	In Process Example
	Cross Process Example
	Conclusion

	SpyWorks Concepts: Exporting Functions
	What are Exported Functions?
	How Dynamic Export Technology Works
	The Exports Class
	The ExportWizard
	Testing Exported Functions
	Distributing your Exported Function files
	Warning! Exporting Functions is Dangerous!

	Migrating to the Desaware.shcomponent.dll
	Introduction
	Fundamental Differences between the Desaware.shcomponent.dll
	The Desaware.shcomponent.dll component
	Major Changes to the Subclassing Component
	Major Changes to the Windows hook Component
	Major Changes to the Keyboard hook Component

	Migrating the Subclass control from a .NET project
	Property changes:
	Method changes:
	Event changes:

	Migrating the WinHook control from a .NET project – Windows
	Property changes:
	Event changes:

	Migrating the WinHook control from a .NET project – KeyBoard
	Property changes:
	Event changes:

	Desaware.shcomponent.dll Reference
	Introduction
	Desaware.SpyWorks Enumerators
	Desaware.SpyWorks Minor Classes
	Desaware.SpyWorks Main Classes
	Controller Class
	Properties
	Methods

	KeyHook Class
	Properties
	Events

	Subclasser Class
	Properties
	Events

	WinHook Class
	Use of the nodef event parameter
	Properties
	Events

	dwsbc80.ocx Reference
	Introduction
	Features:
	Properties
	Methods
	Events

	dwshk80.ocx Reference
	Introduction
	Keyboard hook features:
	Keyboard hook Properties
	Keyboard hook Methods
	Keyboard hook Events
	Windows hook features:
	Windows hook Properties
	Windows hook Events

	.NET samples
	Differences between C# and Visual Basic .NET sample projects

