

The Desaware Licensing System

End to end cryptographic
machine/server licensing for .NET.

Version 1.6

for Visual Studio .NET

Desaware, Inc.

Rev 1.6.1 (11/09)

Page 2

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return the product and all
accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed to you for use only on a single computer. If you wish to install it on additional

computers, you must purchase additional software licenses. You may (and should) make archival copies of the software
for backup purposes.

You may not make copies of this software for other people. Companies or schools interested in multiple copy licenses

or site licenses should contact Desaware, Inc. directly at (408) 404-4760.

You have a royalty-free right to incorporate any of the sample code provided into your own applications with the
stipulation that you agree that Desaware, Inc. has no warranty, obligation or liability, real or implied, for its

performance.

Licensing: The Desaware Licensing System uses the Desaware Licensing System Component. This framework

provides for the transfer of licensing information from the system upon which the Desaware Licensing System is
installed, to Desaware‟s Licensing Web Service. This in turn creates and activates a license key that allows you to use

the Desaware Licensing System components and services on your system. The licensing information transferred is a

one way cryptographic hash that does not include any personal information, or information that could be used to

identify the originating system. If you perform online registration, the registration information will also be transferred.

File Descriptions: You may distribute the files Desaware.MachineLicense??.dll, Desaware.webcodeentry??.dll and

Desaware.Dls.Interfaces??.Dll with your licensed applications. No other files may be redistributed (?? indicates the

framework version).

Source Files: If you have purchased a source code license, the following applies: You may rebuild modified versions of
the software provided subject to the restrictions listed. You may not use this source code to develop or distribute

components and tools that provide functionality similar to all or part of the functionality provided by the Desaware

Licensing System or any of its components except for use licensing your own applications. Modified assemblies and

namespaces must be renamed – you may not use Desaware in the assembly name or any namespace. However
Desaware‟s copyright notice must be prominently displayed in any location where your own copyright notice is

present. Source code may not be published or distributed, and may be used or accessed only by the individuals and at

the locations covered by the source code license. You may distribute modified versions of the

Desaware.MachineLicense??.Dll or Desaware.WebCodeEntry??.DLL files only for use by your applications. Modified
versions of other components may only be used by the individuals and at the locations covered by the source code

license. Modified versions of the Desaware.MachineLicense??.Dll, Desware.WebCodeEntry??.Dll and

Desaware.LicenseServer?? files must be obfuscated before redistribution.

Page 3

Limited Warranty

Desaware, Inc. warrants the physical CD and physical documentation enclosed herein to be free of defects

in materials and workmanship for a period of sixty days from the date of purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to

replacement of defective CD(s) or documentation and shall not include or extend to any claim for or right

to recover any other damages, including but not limited to, loss of profit, data or use of the software, or

special, incidental or consequential damages or other similar claims, even if Desaware, Inc. has been

specifically advised of the possibility of such damages. In no event will Desaware, Inc.'s liability for any

damages to you or any other person ever exceed the suggested list price or actual price paid for the license

to use the software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, Desaware, Inc.

makes no representation or warranty that the software is fit for any particular purpose and any implied

warranty of merchantability is limited to the sixty-day duration of the Limited Warranty covering the

physical CD and documentation only (not the software) and is otherwise expressly and specifically

disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws of the State of

California, and any action hereunder shall be brought only in California. If any provision is found void,

invalid or unenforceable it will not affect the validity of the balance of this License and Limited Warranty,

which shall remain valid and enforceable according to its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions

as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at

DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer Software - Restricted

Rights at 48 CFR 52.227-19, as applicable. Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park

Drive, Suite 48, San Jose CA, 95136.

Information in this document is subject to change without notice and does not represent a commitment on the part of
Desaware, Inc. The software described in this document is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. It is against the law to copy the software on any
medium except as specifically allowed in the license.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, for any purpose without the express written permission of Desaware, Inc.

Copyright © 2003-2009 by Desaware, Inc. All rights reserved. Printed in the U.S.A.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Visual Studio, Windows, Windows 95, Windows
98, Windows ME, Windows NT, Windows 2000, and Windows XP are trademarks of Microsoft Corporation.
Desaware Licensing System, FiveMinuteSoftware, CAS/Tester, SpyWorks, NT Service Toolkit, StateCoder,
VersionStamper, StorageTools, Event Log Toolkit, ActiveX Gallimaufry, Custom Control Factory, and SpyNotes #2, The
Common Dialog Toolkit are trademarks of Desaware, Inc.

Page 4

Important Notice! Warning! Danger!

If you implement a scenario that requires activation in order for your software to install,

and at some future date your licensing server becomes unavailable, that software will

become uninstallable. It will not be possible to enable features which require activation.

This system uses 128 bit encryption, and there are no backdoors or secret codes built in

that will allow you to bypass this licensing scheme. Neither do we know of any flaws at

this time that might allow you to do so.

We ourselves have no tools or technology that would allow recovery or regeneration of

the private key necessary to re-enable licensing of software if the original license server

database is lost.

We encourage you to choose the „Friendly Security‟ scenario if you wish to allow your

software to be installable/runable without server activation (even though it does not

provide the same level of security).

We strongly recommend you take precautions to back-up your database.

Important Notice #2! Warning! Danger!

Any licensing scheme is vulnerable to reverse engineering – someone completely

decompiling, modifying and then recompiling your softare. Due to the nature of .NET

software, it is potentially more vulnerable to this type of attack than traditional software.

It is essential that you make use of obfuscation to reduce the chance of your assembly

being decompiled in this way.

Version 1.1 and later of the licensing system includes an obfuscator, and additional

binding test code that you can incorporate into your software to prevent this type of

attack. Refer to the application note StrongName.pdf for an in-depth discussion of this

topic.

Page 5

Important Notice #3!
Samples and Debugging!

The number one technical support call we get is when the following exceptionm occurs:

The MachineLicense component must itself have a valid license to Install software when

running under a debugger. Be sure to copy a valid .DLSC file to the same directory as

the Desaware.MachineLicense??.dll

In other words - the machine license component is itself licensed. You need to place the

dls10client.dlsc file that was created during installation into the bin directory of your

application in order to debug it. This is, of course, only required to debug your licensed

application (during development). This is also required to debug any of the sample

programs!

To run samples:

Most of the examples include a sample resource file Test.resx or Test15.resx in their

applicatoin or App_GlobalResources directory. You MUST replace this with a resource

file for an application on your own licensing server in order to successfully run or test

these examples!

Page 6

Table of Contents

QUICK INTRODUCTION 10

On Version and Framework Numbers 11
Framework version 11

Assembly versions 11

File versions 12

Previous Versions 12

WHAT’S NEW IN VERSION 1.3-1.6 13

Version 1.6 Update 13
General Features 13

MachineLicense 13

License Server 14

SET UP AND INSTALLATION 15

The Licensing Service 15
Selecting the Server 15

Selecting the Virtual Directory 16

Selecting the Database 17

Securing the Web Service 18

Entering Licensing Information 19

Uninstalling the License Server 20

Testing and Debugging the License Server 20

The License Manager and Development Components 22

THE LICENSE MANAGER 23

License Manager Security 23

Using the License Manager 23
Menu – Advanced - Set Server Connection 24

Menu – Application - Create New Application 25

Developer Information 26

Sign External DLSC 28

Menu - Keys - Create New Keys 29

Installation Keys 29

Menu – Keys - Find Key 31

Individual Key information 31

Advanced License Manager Options (Hosted Installations) 32

Page 7

Advanced License Manager Options (Binding Code Generator) 34

LICENSING SCENARIOS AND SAMPLES 36

On Strong Names 36

Preparing to Use the Samples 37

High Security Scenario 37
Implementing the High Security Scenario 37

Creating a Licensed Application 38

Verifying if an Assembly is Licensed 38

Licensing the Assembly 39

Variations 41

Potential Vulnerabilities 41

More “Friendly” Scenarios 42
Implementing the Friendly Security Scenario 42

Creating a Licensed Application 42

Verifying if an Assembly is Licensed 43

Using the CodeEntryControl Control 44

Licensing the Assembly 45

Handling Deferred Licensing Results 46

Variations 48

Potential Vulnerabilities: 49

The InstallerLicenseTool Example 49

Licensing Components 49
Potential Vulnerabilities 53

Variations 53

Embedded Components 54

Using Custom Data 54

CLIENT COMPONENT REFERENCE 55

ClientLicense Properties 55

ClientLicense Methods 60

ClientLicense Events 66

SaveLicenseModes Enumeration 68

ValidationStatus Enumeration 70

InstallErrorResults Enumeration 70

Page 8

The CodeEntryControl 72

CodeEntryControl Properties 72

CodeEntryControl Methods 72

CodeEntryControl Events 73

Additional Information 73
Code Access Security 73

How the Component is Licensed 73

Code Reuse Blocking 73

THE WEBCODEENTRY CONTROL 75

Using the Desaware.WebCodeEntry control 75
Desaware.WebCodeEntry control properties 75

Client Side Support 75

WEB SERVICE REFERENCE 77

Connecting to the Web Service 77

Web Service Methods 77

Management Web Service 77

Activator Web Service 82

EXTENDING THE LICENSING SYSTEM 83

System Identifiers 83

System Matching Algorithms 85
Installation Match Algorithm 85

Demo Match Algorithm 86

Defining a Custom System Match Algorithm 86

Creating Post Installation Actions 89

Adding data to license certificates 91
Additional ServerData Considerations 96

THE DESAWARE LICENSING SYSTEM: INTERVIEW WITH THE ARCHITECT
 97

MORE FAQ’S 105

APPENDICES 107

Page 9

Glossary 107

Configuring the Web Service web.config File 107

Database Schema and Contents 108
Application Table 108

InstallationCodes Table 108

UniqueInstalls Table 109

SystemIdentifiers Table 109

CustomData Table 109

Installation and Existing Certificates 109

Working with proxy servers 112

Version History - 1.2 Update 113
License Server 113

MachineLicense 113

Samples 114

Utilities 114

Single Application Edition 114

Page 10

Quick Introduction
The Desaware Licensing System combines strong licensing security with ease of use. For

a proper introduction, we strongly recommend you read “The Desaware Licensing

System: Interview with the Architect”, which lays out the philosophy and architecture of

the system.

For those who wish to use the system as quickly as possible, here is a very brief

introduction.

For ease of understanding, we‟ve divided the manual description of the system into three

common scenarios (though each one can be implemented in a wide variety of ways).

High Security scenario This scenario requires server activation via Internet or

other connection. The server returns to the client a

licensing certificate (DLSC file) that is digitally

signed. The licensing certificate can only be used on

that machine.

Friendly Security scenario This scenario uses a temporary unsigned certificate for

cases where an Internet connection does not exist or a

licensing server is unreachable. The licensing

component will attempt to contact a server at a later

time to complete verification and the licensing

process.

Component scenario Allows licensing of components, with or without using

the LicenseProvider architecture defined by .NET.

All of these scenarios support limited duration demonstration licensing.

Additional samples an applicatioin notes demonstrate additional scenarios including:

 Licensing of modules in an application

 Subscription/time based license expiration

 Concurrent (lease based) licensing

 Licensing based on user, domain/IP address, or other criteria

Page 11

On Version and Framework Numbers

There are three different version numbers to consider when working with the licensing

system: the .NET framework version, the Assembly version and the File version.

Framework version

It is always best to run .NET components and applications on the same framework

version they were built on. Fortunately, the .NET framework supports side-by-side

installation, meaning a system can support multiple versions of the framework at once.

We‟ve adopted the convention of including the target framework version for each

component in the component name. For example: the Desaware.MachineLicense20.dll

component targets the .NET 2.0-3.5 framework.

Some framework versions are distinct – the 1.1, 2.0 and 4.0 frameworks can exist on the

same system and you should create separate applications for each one.

The 3.0 and 3.5 frameworks are extensions to the core 2.0 framework. This means that

any assembly written for 2.0 will run on 3.0 and 3.5. However, assemblies that target 3.0

or 3.5 may not run on 2.0 because it may lack required features.

Assembly versions

The assembly version is part of the “strong name” for an assembly. This means that as

long as the assembly version remains the same, you can drop in an update without having

to rebuild your application.

We have shipped three different assembly versions of the

Desaware.MachineLicense20.dll component to date:

Assembly version 1.2 – Initial release on the .NET 2.0 framework.

Assembly version 1.3 – Vista support

Assembly version 1.5 – Numerous feature enhancements (see version history)

Assembly version 1.6 – This release

All versions of the license server for the .NET 2.0 framework will support all client

components.

When upgrading assembly versions, you must rebuild your existing applications to

reference the newer component.

Page 12

As an alternative to rebuilding your application, you can add the following to the

<configuration> section of your application‟s configuration file as long as the framework

version is the same. Note – you must add this AFTER the <configSections> tag,

which must always be the first one in the configuration file.

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="Desaware.MachineLicense20"

 publicKeyToken="c8956dcc7a600871"

 culture="neutral" />

 <bindingRedirect oldVersion="1.1.0.0"

 newVersion="1.5.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

</runtime>

File versions

Each assembly version may be upgraded in cases where we are confident that the newer

component is completely backward compatible with the prior version. In these cases we

increment the file version. You can use the file properties viewer to see the file and

assembly versions of components.

Previous Versions

We are currently pursuing active development on the .NET 2.0-3.5 frameworks. .NET 4.0

will be supported on release.

The last original .NET client component is assembly version 1.1.0.0, file version 1.1.0.0.

The last .NET 1.1 client component is assembly version 1.1.0.0, file version 1.3.0.0.

Page 13

What’s new in version 1.3-1.6

Version 1.6 Update

The version 1.6 update incorporates a wide variety of improvements to the licensing

system, while maintaining backward compatibility with exiting systems.

General Features

This update includes both Licensing System Application notes including a concurrent

licensing example with server, and a subscription application with management features.

MachineLicense

The following versions of the MachineLicense component are included in this release:

Desaware.MachineLicense20.dll version 1.5.3.0 (latest 1.5 assembly version)

Desaware.MachineLicense35.dll version 1.6.0.0

The feature updates for each version are as follows:

Version 1.6

 FIPS compliance

 Native WPF code entry control

 Application Note: Advanced subscriptions and extending demo certificates

 Application Note: Concurrent Licensing (floating licenses)

Version 1.5

 Flexible license certificate storage including Isolated Storage and customized
storage.

 Web code entry control for use on web sites

 Added paste feature to CodeEntryControl.

 Ability to remove default identifiers.

 New constructor allows embedding license resource in any assembly.

 New properties: InternalLicensePath, Certificate, TimeServerSettings.

 New method GetActivationServerTime

 Additional functional and performance improvements.

Version 1.3

Vista compatibility

Page 14

License Server

This update includes the verion 1.6 LicenseServer application.

There is no reason for you to update your existing license server if it is working correctly.

Other than the update to 1.3 (which offered Vista compatibility) all updates through

version 1.6 have been minor changes to improve support on different server

configurations.

The version 1.6 server is licensed for use by URL/Application on Cloud/fallback servers

and works correctly in that environment.

Page 15

Set Up and Installation
The Desaware Licensing System includes three major components:

Licensing Service This is a web service that runs on any

machine that hosts IIS.

License Manager This is a Windows application that is used

to define applications, create installation

codes, and perform other tasks necessary to

use the Desaware Licensing Service.

MachineLicense Component This is the redistributable component that

must be included with each piece of

software that you are licensing.

The Desaware Licensing System is partitioned into two packages, each of which has its

own installation and license key.

 The Licensing Service

 The License Manager and Development Components.

This includes the documentation and the sample programs as well.

There are a number of choices involved during the installation process that will need to

considered. Please read the following installation guide carefully.

The Licensing Service

The Licensing Service is a web service that is accessed by licensed components during

the installation process. It can be installed on any ASP.Net compatible server. The server

will access a database that you define. During installation you have the opportunity of

specifying any accessible SQL server database, an Access database (if the OleDB JET

drivers are installed), or you can specify an OleDB connection string to the database of

your choice.

 The licensing server can support an unlimited number of applications in a single
database (the single application edition only supports a single application).

 The Licensing Service is installed using the Desaware.LicenseServer??.msi

installation package.

The License Server can also be used on hosted installations (where an installation file
may not be run) if certain requirements are met. Refer to the section “Advanced License

Manager Options (Hosted Installs)” for details.

Selecting the Server

Each server license you purchase entitles you to install the LicenseServer on a single

system. In order to deploy the system, you obviously need at least one LicenseServer

running on a system accessible to your clients (either on the Internet, or on an intranet for

internal applications).

Page 16

Your developers can use the same LicenseServer. You may also wish to deploy a

separate license server just for development use. In either case, all your developers can

share a single license server – you do not need one on each developer machine.

Selecting the Virtual Directory

The first choice you have to make is the name of the virtual directory in which to install

the Licensing Server.

This decision is important, because it determines the URL that will be used to access the

Licensing Server. The default is LicenseServer under the default web on the server. You

can change the name from LicenseServer to something more cryptic if you wish. You can

also select the application pool for the server.

Figure 1

Server Installation Dialog Box

Remember the URL used to access your licensing server. You‟ll need it to connect to the

server later. You can change the port number of the server or specify host headers or

perform other configuration tasks using the standard IIS management console.

Page 17

Selecting the Database

After several progress forms, you will come to the License Server configuration form.

Figure 2

License Configuration Form

The SQL Server option will be available if there are one or more instances of SQL server

accessible to your system (in this example, there is a single instance running). If there

were more than one you would be able to choose among them). Instances of the MSDE

or SQL Server express database will be included here as well.

If you wish to use SQL Server, it is up to you to install it before installing the

Desaware License Server. The administrator account that is installing the licensing

server must have permission and access to the instance of SQL server in order for

the automatic installation to succeed.

If the installation program is unable to complete the automatic installation, you will see a

prompt warning you that you must configure the database manually. You can view

diagnostic information explaining why the automatic configuration failed in your

application event log.

You can also choose to use an Access database. As each client only connects with the

licensing service once to obtain a certificate, the service imposes a light load on the

system, and does not generally require a high throughput database. Access should be

adequate for all but the most high volume sites.

You may also specify a custom database connection string. The Edit button brings up the

OleDB connection editor that allows you to connect to a variety of databases. However,

note that the system has only been tested with SQL Server and Access, so we can‟t

Page 18

guarantee operation if you do something “creative” like trying to use OleDB to connect to

an Excel spreadsheet.

If you specify a custom connection string, you should also choose the provider type:

OleDB, SQL or ODBC.

You can create a new database or use an existing database. If you use an existing

database, the Licensing Server will create the following tables:

 Application

 CustomData

 InstallationCodes

 SystemIdentifiers

 UniqueInstalls

If your database is secured, you MUST use a custom connection string that includes the

necessary user information and password to access the database.

Refer to the Database Schema documentation for more details on the structure of the database.

Securing the Web Service

The Security tab is used to secure the management features of the database.

Figure 3

Security Dialog Box

The Licensing web service has two entry points, Activator.asmx and Management.asmx. The

Activator.asmx entry point is used to register licenses and return licensing certificates and is

therefore open. Security to this point is provided by the fact that it only has a single function that

accepts data in a very tightly controlled and encrypted format.

Page 19

The Management.asmx entry point is used to manage the licensing system and should be

available only to those systems in your network that are allowed to perform these operations.

Two types of built-in security are provided (plus, you can use integrated Windows authentication

as well).

1) You can specify IP Filters in the form.

a.b.c.d – to specify a single IP address

or

a.b.c.d-e.f.g.h – to specify a range of IP addresses

2) You can place each permitted IP or range on a separate line.

You can also specify a role in the form YourDomain\YourGroup, where YourDomain is the name

of the domain or computer, and YourGroup is the name of a group or account.

Access to the management features are allowed if the requesting computer is in the valid IP

range OR the role is allowed (either is acceptable).

If you use roles, the Management.asmx entry point to the service will be configured to prohibit

anonymous access and only use NTLM authentication. This means that once you specify a single

role, access will only be possible to clients that connect using NTLM and can authenticate on the

server. However, the service will accept any authenticated client even if the role does not match,

as long as it comes from a valid IP.

You must have NTLM authentication enabled on your server for role authentication to

function!

You can use IIS Manager to also enable Basic authentication if you wish.

The default configuration allows access to management features from the server only (account

127.0.0.1 is the local system).

Refer to the Appendix “Configuring the Web Service web.config file for more information”.

3) If you configure the Management.asmx entry point to use NTLM authentication, the License

Manager application will, if necessary, prompt the user for a user ID and password to use when

accessing the web service (much as a web browser will prompt for a user ID and password when

accessing a secured web site).

Entering Licensing Information

The next window is where you enter the installation code provided by Desaware. You can also

register online as part of the activation process, but that part is optional. The setup program will

automatically detect whether you are installing the full version or single application version of

the licensing system based on the installation code.

Page 20

Figure 4

Licensing System Installation and Registration

The sample code for the installer class we use is included with the Desaware Licensing System

(part of the development system installation), so you can use this approach with your own

customers as well.

Uninstalling the License Server

Uninstalling is automatic except in one situation. If the License Server originally created a

database, you will be prompted to remove the database if you wish.

WARNING! If you remove the database, the private keys and
information required to install any licensed applications will be
permanently lost. Be sure you have backed up your database before
removing it.

The uninstall program will prompt you twice for confirmation, to minimize the risk of accidental

deletion.

Testing and Debugging the License Server

The installation program does an excellent job of installing and configuring the licensing server,

but it is possible that configuration errors will occur – for example: if security settings are

incorrect or if the database connection string is incorrect. In addition, problems often occur

Page 21

during hosted installations (described in the section “Advanced License Manager Options” later

in this document).

If you run into difficulty, please download the latest version of our Server Configuration Guide

available at

http://www.desaware.com/support/documents/files/LicensingServerConfiguration.pdf

This guide is continuously updated with the latest information based on customer feedback from

various servers and hosts.

By default, all errors that occur on the licensing server are hidden. In order to determine which

problems are occuring, you can temporarily expose the service features so that you can test them

using a web browser.

To do so, make the following changes to the web.config file on the license service:

1. Comment out the wsdlHelpGenerator tag as follows:

<!--

 <webServices>

 <wsdlHelpGenerator href="helppage.htm" />

 </webServices>

-->

This will allow you to directly access the web service functions from the browser.

2. Turn off custom errors by changing the customErrors mode from RemoteOnly (the

default) to Off as follows:

 <!-- CUSTOM ERROR MESSAGES

 Set customErrors mode="On" or "RemoteOnly" to enable

 custom error messages, "Off" to disable.

 Add <error> tags for each of the errors you want to

 handle.

 -->

 <customErrors mode="Off" />

You can test the access security settings of your license server by accessing the server on a

browser using the following URL:

http://yourhost/appname/Management.asmx

Where yourhost and appname are the URL of the license server.

If you invoke the “Test” method, you should get an empty string back. If you see the string

“error” it indicates that you do not have access to the licensing server. Add your computer‟s IP

address to the allowed list in the web.config file. If using role based security, be sure you use the

IIS Management console to turn off anonymous authentication for the Management.asmx page.

If an error occurs, you can invoke the “Diagnostics” method to retrieve expanded trace

diagnostics. In order to use this method, the enablediagnostics key under the appSettings section

in your web.config file must be set to “true”. Note that the web.config file now has

http://www.desaware.com/support/documents/files/LicensingServerConfiguration.pdf
http://yourhost/appname/Management.asmx

Page 22

diagnostics turned on by default. You need to disable this when done testing (look for the

key <add key="enablediagnostics" value = "true" /> and set the value to "false").

Please include the text returned by the Diagnostics method with any support enquiries.

If you invoke the GetApplicationList method, you should get a list of applications on the

licensing server (or none, if no applications are defined). This is an excellent method for

verifying the internal operation and database access of the licensing server.

The License Manager and Development Components

The License Manager and Development Components are installed together. This is because

developers need the License Manager to create the license files needed during the development

process to run and test your licensed application. You can install the License Manager without

the development sample code.

The installation sequence is quite simple. The only option that is important to consider is the

default License Service URL which is set in the following dialog:

Figure 5

License Manager Installation Dialog Box

You can change the default server URL at any time by modifying the

Desaware.LicenseManager.exe.config file as shown:

<appSettings>

<add key="Desaware.LicenseManager.Desaware.LicenseService.Management"

value="http://localhost/LicenseServer/management.asmx"/>

<add key="Desaware.LicenseManager20.Desaware.LicenseService.Management"

value="http://localhost/LicenseServer/management.asmx"/>

</appSettings>

If you specified a different port for the license server, use the standard URL port syntax. For

example: to connect to a server on port 152, you would use the string:

http://LocalHost:152/LicenseServer

Page 23

The License Manager
The License Manager application allows you to manage the licensing system. VB.NET source

code for the License Manager is included (except for the DEMO edition). You may modify the

License Manager for your internal use. It is also a good way to learn how to call the Licensing

System‟s Web Service functions.

License Manager Security

The License Manager uses the Management.asmx entry point of the Licensing Server web

service to perform most of its operations. Therefore, it is subject to whatever security constraints

you placed on the Management.asmx entry point during installation or afterwards.

Knowing that one of the secrets of good security is to return as little information as possible

when a security failure occurs, if the License Manager cannot connect to a service you will

generally see very little. You will see no applications, and will not be able to create applications.

There will be no additional error reports.

Important Security Note:

Communication between the License Manager and the Licensing Service is mostly unencrypted.

This is because we assume that they are typically on a local Intranet. You should never use the

License Manager to perform management tasks across the Internet unless through a secure VPN.

If you wish to enable access through the Internet, we recommend you set the Management.asmx

entry point to use SSL.

The License Manager will prompt for a user name and password if your service is secured using

NTLM authentication. While the user name and password will be protected by the NTLM

protocol, the actual data being sent to and from the service will be unencrypted unless you use

SSL.

The Activator.asmx entry point, used by the client licensing component, does not require SSL

because all significant data being passed to the service is encrypted.

Using the License Manager

The main License Manager form displays a list at the top of the form containing the Applications

found for the currently connected licensing server. Under the Applications list on the left is a

treeview control containing information related to the selected Application. Other controls will

appear to the right of the treeview control depending on the information selected in the treeview

control. You can select an Application by clicking under the Application Name heading in the

Applications list. Most License Manager functions apply to the currently selected application.

Also included in the main form are a number of menu commands to bring up the various forms

that you will be using.

Page 24

Figure 6

Main License Manager form

Menu – Advanced - Set Server Connection

The default licensing server is typically specified during installation of the License Manager. It is

also specified in the file Desaware.LicenseManager.exe.config in the directory in which the

License Manager was installed. Look for the appSettings section and set it as follows:

[VS .NET Framework version 2.0]

<appSettings>

<add key="Desaware.LicenseManager20.Desaware.LicenseService.Management"

value="http://localhost/LicenseServer/management.asmx"/>

</appSettings>

This dialog box allows you to select other license servers to manage. You must select a license

server before proceeding.

The remaining Advanced menu entries will be described later.

Page 25

Menu – Application - Create New Application

This dialog is used to create a new application. It is important that you understand the meaning

of Application in the context of this product.

An Application defines all assemblies that are licensed together.

That means that different types of assemblies, different versions of one assembly, or assemblies

across different products, can all be licensed with a single licensing certificate. For example: The

MachineLicense component and the License Manager in this product are part of the same

application. Minor revisions of these assemblies are still considered the same application.

As long as an assembly uses the same Application name, it will use the same DLSC licensing

certificate, installation codes, etc.

The Single Application edition of the licensing system allows you to create only one application.

However, you can upgrade the licensing system to a full version at a later time if you need to add

additional applications.

Figure 7

Creating an Application Dialog Box

Each application has a unique name. This name is limited to letters, numbers and the underscore

character, and is limited to 50 characters, though you should keep it shorter. The Description is a

description of the application. The Description can be up to 255 characters.

You can also specify the number of systems on which an Installation code will work before

returning a warning to the client. The “Warning Count” is limited to a value from 1 to 100000.

Similarly, you specify the number of systems on which an Installation code will work before the

license server rejects the code. The “Block Count” is limited to a value from 1 to 100000.

The Warning and Block status is returned to the client component during installation. Your

software can deal with them as you choose.

Page 26

Finally, you can specify the number of days a demo installation will work. If you do not wish to

allow demo installations, set this value to zero. The “Demo Expiration” is limited to a value from

0 to 100000.

Note that just as you can license multiple assemblies as a single application, you can in fact use

multiple applications in a single assembly. You might do this to license individual features of an

application independently (refer to the ModuleLicensing sample project), or to license your

application for a limited duration (refer to the “Subscription Application Note.pdf” file).

Developer Information

Select the Developer Information entry in the selected application treeview control to display

information intended for use primarily by developers.

In order for clients to work with the licensing server, they need additional information beyond

the application name. For example:

 The Application password (used if you allow installation without an Internet connection,
or to do first pass verification if you do have an Internet connection).

 The demo expiration time for the application.

 The public key for the application.

 The URL of the licensing server.

Developers can use the Copy password to clipboard button to copy the Application password to

the clipboard, or the Copy Public Key to clipboard button to copy the public key to the clipboard.

However, the Save info as ResX file button makes this process even easier.

Page 27

Figure 8

Displaying Developer Information

The Save info as ResX file button brings up a File Save dialog box that allows you to create an

ResX resource file. Developers can add this file to a licensed application and use it to initialize

the client licensing component with just one line of code. This is the preferred approach.

Developers also need a method to obtain a license certificate for use on their own system in order

to develop and test with licensing before they‟ve completed their installation program. The Build

DLSC button creates a license certificate for the system on which the License Manager is

running.

Page 28

Figure 9

Build DLSC Option Dialog Box

The New command creates a new Installation Code and builds a DLSC file using that code.

The Load List command shows all existing installation codes for the application (it changes to

the Save command after the codes are listed). Selecting the Save command builds a DLSC file

using the selected code. This allows you to reuse existing codes and test reuse of codes on

different machines.

The Demo command builds a Demo DLSC file (no installation code is used for demo

installations).

The Temp Certificate checkbox builds a temporary license file (it tries to connect to an invalid

server. Note that you will get an error message when you build a DLSC file with this option.

This allows developers to test scenarios where temporary files are permitted.

Sign External DLSC

The Sign External DLSC button appears when the Application name is selected in the selected

application treeview control (please refer to Figure 6). This option is designed for high security

scenarios where an Internet connection is not available. In these cases you can configure your

installation program to create a temporary certificate on the client‟s system, then have that

certificate sent via email, or other secure channel to a local system. You can then use this option

to digitally sign the certificate and then send it back to the client.

If the temporary certificate already contains an installation code, that code is used during the

signing process. Any errors that occur are reported (for example, if the code or certificate is

invalid).

If the temporary certificate does not contain an installation code, you will have the option of

creating a new code, manually entering an installation code, or signing it without a code (in

which case it will be a demo certificate).

The Single Application edition of the licensing system does not support this capability. However,

you can upgrade the licensing system to a full version at a later time should you need to add this

capability.

Page 29

Menu - Keys - Create New Keys

This dialog box allows you to create one or more installation key codes. You can copy the new

keys to the clipboard or save them to disk.

Note – The demo version of the Desaware Licensing System allows you to create up to
10 installation key codes per application. The Single Application edition allows you to

create up to 1000 installation key codes.

Installation Keys

The installation Keys for the selected application are displayed in the treeview control. You can

retrieve or update detailed installation information for a specific installation key code. Normally

all key codes generated for a specific application are displayed as shown by the Keys (No Filter)

entry. The License Manager provides several ways to filter key codes.

Figure 10

Installation Keys

The Filter License Keys check box enables/disables the rest of the filter controls. You can filter

keys by entering their first characters or by displaying only keys containing specific information.

You can specify a filter to display only keys starting with certain characters/digits by specifying

the beginning of the key (up to 5 characters/digits) in the Show only keys beginning with the

following text box. You can display only keys that contains User Defined information by

selecting the Show only keys with User Defined information check box. You can display only

Page 30

keys that contains Custom Data information by selecting the Show only keys with Custom

information check box (this option is not available if the Show unregistered keys option button is

selected since Custom information is only entered for registered keys). You can display the keys

based on whether they have been registered (used) on your License Server or not by selecting

one of the Show keys option buttons. After entering your filter criteria, click on the Apply Filter

changes button to redisplay the installation keys based on your filters.

The Create New Keys button displays the Create Keys dialog allowing you to create new license

keys for the selected application.

The Output Keys to XML file button will output detailed information for all of the keys displayed

in the treeview control to an XML formatted text file. A sample output is displayed below:

<DesawareLicensingSystem>

<ServerURL>http://www.desaware.com/LicenseServer/management.asmx</ServerURL>

<ApplicationName>Test</ApplicationName>

<Keys>

 <HR48K-CUP75-G7YKY-YX5YB-HY795-8>

 <Count Warning="2" Block="4" />

 <UserDefined>Test changes</UserDefined>

 <a33eac1e-0ade-44ac-8dc0-5937a63435e4>

 <Date Installation="6/11/2003 12:00:00 AM" DemoExpiration="6/11/2003

12:00:00 AM" />

 <add key="name" value="Robert Harte">

 <add key="email" value="robertharte@somecompany.com">

 </a33eac1e-0ade-44ac-8dc0-5937a63435e4>

 <9eb5caa0-5ac9-4e67-a752-90cfb356d02c>

 <Date Installation="7/11/2003 12:00:00 AM" DemoExpiration="7/11/2003

12:00:00 AM" />

 <add key="name" value="William Pate" />

 </9eb5caa0-5ac9-4e67-a752-90cfb356d02c>

 </HR48K-CUP75-G7YKY-YX5YB-HY795-8>

 <K8RFM-XPF5F-FEV6W-UCC3V-7ZAZQ-7>

 <Count Warning="2" Block="4" />

 </K8RFM-XPF5F-FEV6W-UCC3V-7ZAZQ-7>

</Keys>

</DesawareLicensingSystem>

The ServerURL tag displays the License Server URL. The ApplicationName tag displays the

selected application name. The Keys tag is the root node of a list of key nodes containing detailed

information for each key. Each key node is identified by the actual license key code. Each key

node always contains the Warning and Block count for that key. An optional UserDefined tag

follows if that key contains any User Defined data. Another optional UniqueInstallID tag follows

if that key was registered on the License Server. The tag key corresponds to the UniqueInstallID

field in the License Server database. Within each UniqueInstallID node are keys indicating the

InstallationDate, along with the DemoExpiration date, and any Custom Data information for that

particular installation. Custom Data information are denoted by keys containing a “key-value”

pair which corresponds to the field name and value of each custom data. Note that there could be

multiple UniqueInstallID tags for each license key.

Page 31

Menu – Keys - Find Key

This menu command displays the Find Key modeless dialog in which you can enter partial text

of a license key code you wish to find within the keys treeview control. The key search is based

on the currently displayed list of keys (filtered or not). The search is case insensitive, the „-„

character may be used, and wildcards are not supported. The Find button performs the search

from the beginning of the key treeview control, the Find Next button performs the search from

the last matching key.

Individual Key information

Select an installation key code to display information for that particular key. You can update the

Attempts before warning given and and Attempts before key is blocked counts for the selected

installation key code. For example: you sold a copy of your licensed product and the customer is

so happy they wish to buy a site license for up to 100 developers. You can issue them 99 new

installation key codes, or you can update the Warning and Block count for their existing code to

100 or higher, and allow them to use the same code on up to 100 machines.

There is a User defined information field of up to 255 characters associated with each key code

that you can use for any purpose.

Click on the Apply Changes button to save the changes for the select key.

The Show Detailed Info button brings up a tree view for the selected installation key code

showing each unique system on which the installation key code was used and the date on which

it was installed (also the expiration of the demo if applicable). Custom data is also shown for the

specified key.

Page 32

Figure 11

Individual Key

For each installation, you can view any custom data that was sent to the server during the

installation. This might include registration information, for example.

Note, there is no facility in the license manager to modify custom information. The current

version of the licensing server only provides a facility to capture this data from the client. You

can, however, write your own utilities to work with the database to extract or modify this custom

data.

Advanced License Manager Options (Hosted Installations)

This feature is not available in the DEMO edition of the Desaware Licensing System.

The following advanced options are generally used only for hosted installations. Normally, the

installation, licensing and configuration of the server is handled by the installation program.

However, if you are hosting your license server on a shared host (perhaps provided by an ISP or

hosting service) it may not be possible to run the installation program. In these situations you

must be sure that your hosting service allows you to configure the following:

1. Database support. This includes one of the following:

a. SQL server support, including the ability to assign database permissions to the

account under which ASP.Net is running.

b. JET runtime support, including the ability to specify file and directory

permissions to the account under which ASP.Net is running.

c. Other database support, in which you can grant the ASP.Net account sufficient

permission to create tables and modify data in the required database.

2. Database creation. You must have the ability to define/create an empty database and

specify a correct connection string for that database. Plus, you must be able to set the

security for that database as specified previously.

3. Directory security. You must be able to set file/directory access security to allow the

ASP.Net account to read or write files from directories you specify.

4. Code Access Security permissions. The Licensing Server requires full trust to run.

Refer to our online FAQ at http://www.desaware.com/support/faq/licensing/index.aspx for

additional information on using the license server on shared hosts and to download the latest

version of the server configuration guide.

Security settings are both important and amongst the most challenging issues to manage. Your

ASP.Net application runs under an account. That account can be specified in the system‟s

machine.config file or in the Advanced configuration for the Application Pool hosting the

application (Windows servers and IIS 7). By default the account is called ASPNET under

Windows 2000, Network Service under XP and later. On server systems, you can specify the

account used by the application pool in which the server is running. On Windows 7, the default

setting is a special Application Pool Identity account which has the same name as the application

pool. All references to “ASP.Net” account that follow refer to the account under which ASP.Net

is running on your system.

http://www.desaware.com/support/faq/licensing/index.aspx
http://www.desaware.com/support/documents/files/LicensingServerConfiguration.pdf

Page 33

To perform a hosted installation you must:

1. Install the license server on a local system in demo mode (in order to extract the

necessary files, but not use the license key).

2. Create the appropriate virtual directory on the host system.

3. Copy the files to the host system. This includes the files in the root virtual directory and

the bin directory.

4. If using Access, create a DB directory on the host system and set security for that

directory to allow the ASP.Net account to read, write and modify files in that directory.

Create a blank Access database in that directory. We recommend using the IIS

Management console to disable read access to this directory.

Be sure the database name and path matches that specified in the connection string.

5. If using SQL (or other database), create the necessary database and set security for the

database to allow the ASP.Net account to create tables and perform all other access

operations to that database.

6. Add the connection string and access type to the web.config file as described in the

Appendix: “Configuring the Web Service web.config File”. You must specify a valid

database connection string, and the connection string must work under the account under

which ASP.Net is running.

7. Temporarily set the security of the bin directory to allow the ASP.Net account to read and

write files in the directory. (Note, if you are unable to do so, specify a directory that

ASP.Net can write to in the appsettings section in your web.config file with the

altneratehostinstallpath key: <add key="alternatehostinstallpath"

value="/writabledirectory" />. The directory can be a physical directory on the system or

relative to the web site root. The DLSC file will be placed in that directory and you

should copy it to your bin directory after the hosted install is complete.

8. Use the License Manager Advanced– Set Server Connection menu command to select the

correct server. You will get an error message "Server was unable to process request. -->

The Desaware Licensing Service is not licensed for use on this server." - just ignore that

error message since the server is not yet licensed.

9. Use the License Manager Advanced - Hosted Install menu command to enter your

installation code for the server. This will license your hosted server.

10. Use the LicenseManager Advanced - Verify Hosted Database command to verify your

connection to the database and initialize the database tables. Once this command

succeeds, your license server is ready to use.

11. Reset the security of the bin directory to its original setting. If you used the

alternatehostinstallpath key to place the DLSC file in a different directory, copy it to the

bin directory.

12. If you are using role based security, use the IIS Management console to turn off basic

authentication to the Management.asmx page.

Page 34

Refer to the section “Testing and Debugging Server Installations” earlier in this document for

assistance in resolving installation problems.

The Hosted Installation option is also used to upgrade the licensing system from the single

application to full edition. Just enter your full version installation code to upgrade the

selected server.

Advanced License Manager Options (Binding Code Generator)

This feature is not available in the DEMO edition of the Desaware Licensing System.

This feature is used to generate code that verifies your .NET assembly had not been modified.

We highly recommend you read the accompanied StrongName.pdf document on using code

binding to ensure that your .NET assemblies have not been modified.

Figure 12

Binding Code Generator

Enter the public key tokens for your assembly in either of the Debug or Release text boxes.

Separate each decimal value with a space. Or, you can select either of the Debug or Release

Extract from Assemblies buttons to extract the public token key from a debug or release

Page 35

compiled version of the assembly. Select the Generate Code button to generate the Visual Basic

.NET or C# code for insertion into your application project.

Page 36

Licensing Scenarios and Samples
The Desaware Licensing System supports a variety of licensing situations, but they will tend to

fall into three different scenarios. We‟ve included samples of how you might implement these

three scenarios.

Important Notice! Warning! Danger!

If you implement a scenario that requires activation for your software to install, and at some

future date your licensing server becomes unavailable, that software will become uninstallable. It

will not be possible to enable features for which you choose to require activation.

This system uses 128 bit encryption, and there are no backdoors or secret codes built in that will

allow you to bypass this licensing scheme. Neither do we know of any flaws at this time that

might allow you to do so.

We ourselves have no tools or technology that would allow recovery or regeneration of the

private key necessary to re-enable licensing of software if the original license server database is

lost.

We encourage you to choose the “Friendly” scenario if you wish you allow your software to be

installable/runable without server activation (even though it does not provide the same level of

security).

On Strong Names

Important Notice!

Licensed assemblies should always be strong-named. If you do not use a strong name, it will be

possible for people to bypass your licensing code by modifying your assembly or using other

methods. Strong naming an assembly both protects your code from modification, and

cryptographically binds it to the licensing system. We highly recommend that you refer to the

separate “StrongName.pdf” article (included in the full edition of the Desaware Licensing

System) written by Dan Appleman for more details on protecting your assemblies.

You should also use obfuscation (the Desaware QND Obfuscator is included in the full edition of

the Desaware Licensing System) to help protect your assembly from other forms of attack

including modification of internal variables via reflection, or complete disassembly/reassembly

of your code.

Page 37

Preparing to Use the Samples

Before you can try any of the sample programs, you must do the following:

1. Install the Licensing Server on the system of your choice as described in the directions

earlier. Be sure to allow access to the Management.asmx page from the development

machine on which you are testing the software.

2. Install the developer/management software. The server and development/management

software can be installed on the same system.

3. Using the License Manager, create an application. We will use an application named

“Test” for several of the samples.

4. Using the Application-Developer Info dialog box, use the Save ResX command to create

the Test.resx file for your server.

5. Copy the new Test.resx file to replace the test.resx file included with the sample

programs. If you use the test.resx file we provide, you will (correctly) see licensing

failures, because they contain information for our own test server!

6. Use the Installation Code-Create Codes command to create several installation codes to

use.

7. Copy your Desaware.DLS10Client.dlsc file to the executable directory for the sample.

This is required to debug the sample.

The sample code shown here assumes that the module has an Imports (VB) or using (C#)

reference to the Desaware.MachineLicense namespace.

High Security Scenario

This scenario represents the highest possible level of security. It has the following

characteristics:

 End to end cryptographically secure.

 Requires an Internet connection and activation.

 Precise limits on the number of systems on which an installation code can be used.

 If your licensing server is down or unavailable, the software cannot be installed (note,
you can list multiple license servers in the software you distribute).

This scenario is called “helping our customers stay honest” by some, “we don’t trust our

customers one bit” by others. We don‟t use it ourselves, but making sure there was a high

security scenario was a top design priority. Why? Because it is infinitely better to start with tight

security and selectively relax it, than to start with relaxed security and try to make it tighter.

Implementing the High Security Scenario

One of the curious contradictions about security systems is this: higher security tends to come

from simplicity, not complexity. As you reduce options and features, you have fewer variations

to deal with, and fewer potential attack points.

Page 38

Thus it turns out that the high security scenario is the simplest to implement. How simple?

You‟ll be amazed.

Creating a Licensed Application

1. Create a new assembly to be licensed.

2. Reference the Desaware.MachineLicense.dll component in your project.

3. Add a ClientLicense component to the project. This can be done by dragging it from the

toolbar onto a form or component container, or using code (as shown shortly).

You can add the ClientLicense component to your toolbox by right clicking on the

toolbox and selecting the Customize Toolbox menu item. Then select the .NET

Framework Components tab and check the ClientLicense checkbox.

If the ClientLicense checkbox does not appear, click on the Browse button and select the

Desaware.MachineLicense.dll file to add the ClientLicense component to the list of .NET

components.

4. As noted at the beginning of this section, you should have used the License Manager

application to create the Resx resource file (test.resx). Add this file to the project.

5. Set the ResourceName property of the ClientLicense component to the name of the

resource file (without the .Resx extension).

In code, you can accomplish the same effect as follows:

[VB]

Dim ClientLicense1 As New Desaware.MachineLicense.ClientLicense("Test")

[C#]

internal Desaware.MachineLicense.ClientLicense ClientLicense1;

ClientLicense1 = new Desaware.MachineLicense.ClientLicense("Test");

Verifying if an Assembly is Licensed

The HighSecurity sample application performs a license validation during the form load event.

This demonstrates the simplest type of verification:

[VB]

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 ClientLicense1.VerifyLicense(True)

 If ClientLicense1.Licensed Then

 lblLicensed.Text = "Application is licensed"

 Else

 If ClientLicense1.DemoVersion Then

 lblLicensed.Text = "Application is a demo version"

 Else

 lblLicensed.Text = "Application is not licensed"

 End If

 End If

End Sub

Page 39

[C#]

private void Form1_Load(object sender, System.EventArgs e)

{

 ClientLicense1.VerifyLicense(true);

 if (ClientLicense1.Licensed)

 {

 lblLicensed.Text = "Application is licensed";

 }

 else

 {

 if (ClientLicense1.DemoVersion)

 {

 lblLicensed.Text = "Application is a demo version";

 }

 else

 {

 lblLicensed.Text = "Application is not licensed";

 }

 }

}

That‟s it. One line to create and initialize the component. One line to do the verification.

Two properties, Licensed and DemoVersion, to determine if the license is valid.

There are some additional properties, as you‟ll see later, that allow you to provide additional

feedback as to why the license failed, but for most situations, this is all the code you‟ll need for

the High Security scenario.

Licensing the Assembly

The first time you run the sample application it will, of course, display that it is unlicensed.

That‟s because you never created a license file for the application.

There are two types of licenses, a demo license and a full license – the difference between them

being that a demo license expires after a set time, and does not have an installation code.

A license can be created by a separate program (i.e., your installer program), or by your own

program (in other words, you can allow your demo version to be converted into a full version by

allowing the user to activate the license from within the program). That‟s how the HighSecurity

example does it.

Drop a CodeEntryControl on the form (for details on how to do this, refer to the earlier Creating

a Licensed Application section and follow similar steps as adding the ClientLicense control).

This is a control designed to make it easy to enter a control code.

In the next example, you‟ll learn how you can create the CodeEntryControl to provide first pass

verification of an installation code and let the user know when a valid installation code has been

entered, however in this example we‟ll keep things simple.

Page 40

If an installation code has been entered (valid or not), clicking the Install button will cause a

license to be created if possible. Otherwise clicking the install button will cause a demo license

to be created.

[VB]

Private Sub cmdInstall_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdInstall.Click

 Dim results As InstallErrorResults

 If CodeEntryControl1.InstallCode = "" Then

 results = ClientLicense1.InstallDemo(_

 InstallationModes.SyncActivationRequired)

 Else

 results = ClientLicense1.InstallLicense(_

 CodeEntryControl1.InstallCode, _

 InstallationModes.SyncActivationRequired)

 End If

 If results > InstallErrorResults.FatalError Then

 MsgBox(ClientLicense1.GetResultDescription(results))

 End If

End Sub

[C#]

private void cmdInstall_Click(object sender, System.EventArgs e)

{

 InstallErrorResults results;

 if (CodeEntryControl1.InstallCode == "")

 {

 results = ClientLicense1.InstallDemo(Desaware.MachineLicense.

 InstallationModes.SyncActivationRequired);

 }

 else

 {

 results = ClientLicense1.InstallLicense(CodeEntryControl1.

 InstallCode, Desaware.MachineLicense.InstallationModes.

 SyncActivationRequired);

 }

 if (results > InstallErrorResults.FatalError)

 {

 System.Windows.Forms.MessageBox.Show

 (ClientLicense1.GetResultDescription(results));

 }

}

Try clicking on the Install button without entering a code. If you have things set up correctly, the

next time you run the program, it should report that it is validated as a demo version of the

program.

Now try entering a random installation code and clicking the install button. You‟ll get an Invalid

installation code error.

Page 41

Now enter a valid installation code (obtained from the License Manager application) and click on

the Install button.

Next time you run the program you will see that it is fully licensed.

The ClientLicense InstallDemo and InstallLicense methods return specific information on the

installation process. Numbers lower than FatalError (99) represent success, and offer additional

information that you may wish to use in customizing your user interface. For example: If an

installation was allowed, but exceeds the “Warning” number for the application, you may wish to

let the user know that there is a potential license violation, because the installation code has been

used on multiple systems.

If the user has just installed a demo license on a system that the server detects as already having

a full license, the demo license is installed, but you may wish to notify the user of the fact that

they have already used an installation code on that system and may wish to reuse it to reenable

the full license. There are additional results that do not apply to the high security scenario.

That‟s it. You can add additional user feedback, and of course have to decide exactly what to do

in your assembly if it is a demo version or unlicensed. And you‟ll shortly see how to improve the

use of the CodeEntryControl to provide quick feedback on installation code errors. But the

licensing itself is just that easy.

If you wish to repeat the experiment, just delete the license file (in this case Test.dlsc) that is in

the assembly‟s directory.

Variations

The majority of the variations of this scenario relate to the user interface and deciding how the

application should work in unlicensed or demo mode. Other options to consider include:

 Sending additional information (such as registration information) to the server during
activation.

 Modifying the System Matching algorithm or adding additional system identifiers (as
described later).

 Requiring an internet connection in order to run in demo mode. Setting the

ClientLicense‟s DemoRequireInternet property will attempt to retrieve the current date

from a number of internet time servers when the demo license verification is performed.
The date retrieved will be used (rather than using the system date) to determine whether

the demo has expired.

Potential Vulnerabilities

 You can get licensed software to run on more than one system by matching one of the

system identifiers so that the licensing server thinks they are the same system. You can

add your own custom matching algorithm to tighten security even further, for example:

by locking the software to a specific network card or CPU serial number.

 Refer to the section “Code Reuse Blocking” for unusual cases that can lead to extra
authorizations of an installation code.

Page 42

 If demos are permitted to run without an Internet connection, the user can set back their
system date to extend demo periods.

More “Friendly” Scenarios

This scenario is forgiving of cases where an Internet connection or the licensing server is

unavailable. It has the following characteristics:

 Cryptographically secure only if an Internet connection exists.

 Will attempt a deferred connection to the licensing server once a connection exists. You
decide what to do in case the license is invalid.

 Good security even if an Internet connection does not exist.

This scenario is for those who do trust their customers to be honest. It provides outstanding

license control as long as the customer does not intentionally work to subvert the licensing.

Secure licensing requires connection to a server. Any licensing system that does not include

connection to a server is based on “secrets” – hidden files, encryption, registry entries, etc. – all

of which can be bypassed or defeated with enough effort.

One of the primary design goals for the Desaware Licensing System was to allow licensing

without an Internet connection. The approach we took is as follows:

 If an Internet connection exists, licensing proceeds exactly as described in the High
Security scenario.

 If an Internet connection does not exist, we use hidden information (the application
password) to verify an installation code and create a temporary certificate.

 During verification, if an Internet connection exists, the licensing component will send

the temporary certificate to the server for signing. The results of that attempt are made

available to your application to handle as you wish.

Implementing the Friendly Security Scenario

Because the Friendly Security scenario involves additional flexibility, it is somewhat more

complex and offers more variations.

Creating a Licensed Application

1. Create a new assembly to be licensed.

2. Reference the Desaware.MachineLicense.dll component in your project.

3. Add a ClientLicense component to the project. This can be done by dragging it from the

toolbar onto a form or component container, or using code (as shown shortly).

You can add the ClientLicense component to your toolbox by right clicking on the

toolbox and selecting the Customize Toolbox menu item. Select the .NET Framework

Components tab and check the ClientLicense checkbox.

If the ClientLicense checkbox does not appear, click on the Browse button and select the

Page 43

Desaware.MachineLicense.dll file to add the ClientLicense component to the list of .NET

components.

4. As noted at the beginning of this section, you should have used the License Manager

application to create the Resx resource file (test.resx). Add this file to the project.

5. Set the ResourceName property of the ClientLicense component to the name of the

resource file (without the .Resx extension).

In code, you can accomplish the same effect as follows:

[VB]

Dim WithEvents ClientLicense1 As New_

Desaware.MachineLicense.ClientLicense("Test")

[C#]

internal Desaware.MachineLicense.ClientLicense ClientLicense1;

ClientLicense1 = new Desaware.MachineLicense.ClientLicense("Test");

Verifying if an Assembly is Licensed

The FriendlySecurity sample application performs a license validation during the form load

event. This demonstrates a slightly more complex form of verification:

[VB]

Dim vs As ValidationStatus

CodeEntryControl1.License = ClientLicense1

vs = ClientLicense1.VerifyLicense(True)

If ClientLicense1.Licensed Then

 lblLicensed.Text = "Application is licensed"

Else

 If ClientLicense1.DemoVersion Then

 lblLicensed.Text = "Application is a demo version, " _

 & ClientLicense1.DemoDaysRemaining.ToString() & _

 " Days remaining"

 Else

 lblLicensed.Text = "Application is not licensed"

 End If

End If

If ClientLicense1.Licensed OrElse ClientLicense1.DemoVersion Then

 If ClientLicense1.DeferredLicense Then

 lblTemp.Text = "License is based on a temp certificate"

 Else

 lblTemp.Text = "License is based on a signed certificate"

 End If

End If

[C#]

ValidationStatus vs;

CodeEntryControl1.License = ClientLicense1;

Page 44

vs = ClientLicense1.VerifyLicense(true);

if (ClientLicense1.Licensed)

{

 lblLicensed.Text = "Application is licensed";

}

else

{

 if (ClientLicense1.DemoVersion)

 {

 lblLicensed.Text = "Application is a demo version, " +

 ClientLicense1.DemoDaysRemaining.ToString() +

 " Days remaining";

 }

 else

 {

 lblLicensed.Text = "Application is not licensed";

 }

}

if ((ClientLicense1.Licensed) || (ClientLicense1.DemoVersion))

{

 if (ClientLicense1.DeferredLicense)

 {

 lblTemp.Text = "License is based on a temp certificate";

 }

 else

 {

 lblTemp.Text = "License is based on a signed certificate";

 }

}

As you can see, there is one additional property to consider in this case. The DeferredLicense

property indicates that the licensing results are based on a temporary (unsigned) license. It is up

to you to decide whether to change the behavior of your component based on whether it is using

a temporary or signed license.

Note, this example also illustrates how you can determine the number of days left in a demo

installation.

Using the CodeEntryControl Control

Please be sure you read the “Licensing the Assembly” section for the High Security scenario

before continuing.

This scenario demonstrates a more advanced use of the CodeEntryControl control. Instead of a

single command button, there are two, one for a regular install, the other for a demo install. The

regular install command button is disabled by default.

In the Form_Load event, the License property for the CodeEntryControl control is set to the

ClientLicense in use using the following code:

CodeEntryControl1.License = ClientLicense1

This allows the CodeEntryControl to do first pass verification of the installation code. The

LicenseCodeEntered event is raised whenever the status of the code in the control changes.

Page 45

[VB]

Private Sub CodeEntryControl1_LicenseCodeEntered(ByVal Sender As _

Object, ByVal e As Desaware.MachineLicense.CodeEntryEventArgs) _

Handles CodeEntryControl1.LicenseCodeEntered

 cmdInstall.Enabled = e.IsValid

End Sub

[C#]

private void CodeEntryControl1_LicenseCodeEntered(object Sender,

 Desaware.MachineLicense.CodeEntryEventArgs e)

{

 cmdInstall.Enabled = e.IsValid;

}

The regular install command button will only be enabled when there is a valid code in the

control.

If you do not set the License property of the CodeEntryControl, the IsValid property of the

CodeEntryEventArgs will be True any time there are 26 characters in the control – no

verification will take place. The CodeEntryEventArgs object includes a ValidationChecked

property to let you know whether validation took place.

Note: The CodeEntryControl.InstallCode property will be an empty string if 26 characters

are not present (no validation) or if the code is not valid (with validation).

Licensing the Assembly

The licensing code for this scenario is virtually identical to the High Security scenario. The main

difference is the use of the SyncAllowDeferred argument instead of the SyncActivationRequired

argument in the InstallLicense and InstallDemo methods. This instructs the licensing component

to install a temporary certificate if a licensing server cannot be reached.

This example also has separate methods for the full and demo install, but that is a variation that

can be applied to any licensing scenario.

[VB]

Private Sub cmdInstall_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cmdInstall.Click

 Dim results As InstallErrorResults

 results = ClientLicense1.InstallLicense(_

 CodeEntryControl1.InstallCode, _

 InstallationModes.SyncAllowDeferred)

 If (Not ClientLicense1.DeferredLicense) AndAlso results >

InstallErrorResults.FatalError Then

 MsgBox(ClientLicense1.GetResultDescription(results))

 End If

End Sub

Private Sub cmdDemo_Click(ByVal sender As System.Object, _

Page 46

ByVal e As System.EventArgs) Handles cmdDemo.Click

 Dim results As InstallErrorResults

 results = _

 ClientLicense1.InstallDemo(InstallationModes.SyncAllowDeferred)

 If (Not ClientLicense1.DeferredLicense) AndAlso results >

InstallErrorResults.FatalError Then

 MsgBox(ClientLicense1.GetResultDescription(results))

 End If

End Sub

[C#]

private void cmdInstall_Click(object sender, System.EventArgs e)

{

 InstallErrorResults results;

 results = ClientLicense1.InstallLicense(

 CodeEntryControl1.InstallCode, Desaware.MachineLicense.

 InstallationModes.SyncAllowDeferred);

 if ((!ClientLicense1.DeferredLicense) &&

 (results > InstallErrorResults.FatalError))

 {

 System.Windows.Forms.MessageBox.Show(

 ClientLicense1.GetResultDescription(results));

 }

}

private void cmdDemo_Click(object sender, System.EventArgs e)

{

 InstallErrorResults results;

 results = ClientLicense1.InstallDemo(Desaware.MachineLicense.

 InstallationModes.SyncAllowDeferred);

 if ((!ClientLicense1.DeferredLicense) &&

 (results > InstallErrorResults.FatalError))

 {

 System.Windows.Forms.MessageBox.Show(

 ClientLicense1.GetResultDescription(results));

 }

}

If the DeferredLicense property is True, the currently installed license is a temporary license –

meaning an error occurred (such as the server couldn‟t be reached) that did not indicate the

license was invalid. In other words, if the result from the server is that the installation code is

invalid or blocked, no temporary certificate would be installed, so the DeferredLicense property

would be false.

You can also use the AsyncAllowDeferred option for installation. This option immediately

installs a temporary license, then proceeds to attempt to obtain a signed licensed in a background

thread.

Handling Deferred Licensing Results

When you use the SyncAllowDeferred option and the server cannot be reached, the licensing

component will attempt to obtain a signed license each time you call the VerifyLicense method.

Page 47

The VerifyLicense method takes a single parameter “DeferredCheckInBackGround”, which

causes the license check to happen asynchronously – this is the preferred approach.

The AsyncAllowDeferred installation option also causes the server connection to occur in the

background.

Regardless of how the background installation is triggered, the response is the same. The

ClientLicense component will raise a DeferredInstallComplete event when the attempt to install

is complete. The ClientLicenseEventArgs event parameter contains the value InstallErrorResults

that indicates the result of the installation. This value can also be obtained from the

ClientLicense InstallError property.

[VB]

Private Delegate Sub UserWarningDelegate(ByVal warning As String)

Private Sub UserWarning(ByVal warning As String)

 MsgBox("An error occurred during installation: " & warning)

End Sub

Private Sub ClientLicense1_DeferredInstallComplete(ByVal Sender _

As Object, ByVal e As Desaware.MachineLicense.ClientLicenseEventArgs) _

Handles ClientLicense1.DeferredInstallComplete

 If e.InstallResults > InstallErrorResults.FatalError Then

 Dim userdelegate As UserWarningDelegate = _

 AddressOf Me.UserWarning

 Me.Invoke(userdelegate, New Object() _

 {ClientLicense1.GetResultDescription(e.InstallResults)})

 End If

End Sub

[C#]

private delegate void UserWarningDelegate(string warning);

private void UserWarning(string warning)

{

 System.Windows.Forms.MessageBox.Show ("An error occurred

 during installation: " + warning);

}

private void ClientLicense1_DeferredInstallComplete(object Sender,

 Desaware.MachineLicense.ClientLicenseEventArgs e)

{

 if (e.InstallResults > InstallErrorResults.FatalError)

 {

 UserWarningDelegate userdelegate = new

 UserWarningDelegate(this.UserWarning);

 this.Invoke(userdelegate, new object[]

 {ClientLicense1.GetResultDescription(e.InstallResults)});

 }

}

Page 48

In this example, when the asynchronous operation returns a fatal error, it brings up a message

box to the user. Note that the event occurs on a background thread, thus communication through

the main form must be through the Invoke method.

This brings you to the most important question you need to answer. What do you do if a

temporary license was installed, and the background installation indicates that a license violation

has occurred?

By default, if a fatal error occurs during a background operation, the licensing component does

the following:

 If a temporary certificate had just been installed (as occurs when doing an install), the
certificate will be deleted if (and only if) the server responds with a specific license

violation, such as an invalid installation code, blocked installation code, or expired demo.

It will not delete the temporary certificate if the server is unreachable, does not support

that application, or has some other error.

 If the background operation was triggered by a VerifyLicense command, the license

component will NOT delete an existing temporary certificate, even if a fatal error occurs.

This follows the general principle of not disabling a working application.

You can delete the license at any time. The license can be found by querying the ClientLicense

component‟s LicenseFilePath property.

Variations

As before, most of the variations on this scenario relate to the user interface and deciding how

the application should work in unlicensed or demo mode. Other options to consider include:

 What to do if during a verification you discover that the temporary license is valid, but

the server reports a license violation?

 Sending additional information (such as registration information) to the server during
activation.

 Retrieving server data (described later) from the license file.

 Modifying the System Matching algorithm or adding additional system identifiers
(described later).

The Desaware Variation

Our own licensing approach is based on the “Friendly” scenario, with the following additions:

 The only time we disable working code is when a demo version expires.

 We allow one or two “extra” uses of an installation code to add tolerance for cases where
the software is uninstalled, or accidentally installed on the wrong machine.

 We do not disable a working temporary license.

Page 49

Potential Vulnerabilities:

 You can get licensed software to run on more than one system by matching one of the
system identifiers so that the licensing server thinks they are the same system. You can

add your own custom matching algorithm to tighten security further, for example: by

locking the software to a specific network card or CPU serial number.

 Because licensing is permitted without an Internet connection, you can install the
software while the computer is unplugged from the Internet and it will run. License

verification will proceed after an Internet connection is available. You have great

flexibility in deciding what to do when running under a temporary license, and what to do

if such license turns out to be invalid - thus you can control the level of security.

 If demos are permitted to run without an Internet connection, the user can set back their

system date to extend demo periods.

 Refer to the section “Code Reuse Blocking” for unusual cases that can lead to extra
authorizations of an installation code.

The InstallerLicenseTool Example

The InstallerLicenseTool example demonstrates a slightly more sophisticated example of using

the licensing component. It demonstrates:

 Capturing registration data to the server.

 Use of the licensing component as part of a Windows Installer custom tool.

You may recognize the sample. It‟s the same code we use during installation of the Desaware

Licensing System.

Licensing Components

The .NET framework includes a set of classes that implement licensing for components. The first

thing you need to know about this framework is that you don‟t need to use it.

If you have a component, such as a business object or web service or class library – where there

is no distinction between design time and runtime - simply use the licensing component as

shown earlier, and throw an exception (or do whatever you feel is appropriate) if your

component is unlicensed.

The .NET Framework licensing classes implement a fairly traditional form of component

licensing – where the host notifies the component if it is in design mode or run mode. While in

design mode, the design environment retrieves a licensing string which it passes to the

component for verification at runtime.

While it can be extended in various ways, the base scenario is to make sure anyone using a

component in their projects is properly licensed, and to allow the component to run embedded

within that project without requiring the user of that component to be licensed. In other words,

the developer of the component buys the license, but people running applications built with that

component do not. The default license provider (LicFileProvider) that comes with .NET looks

for a “license file” (aka text file) in the directory of the component, and uses the contents of that

file as a license key.

Page 50

The Desaware Licensing System includes a LicenseProvider that allows you to adopt this

approach, with considerably more security.

The Components sample directory includes two projects: LicensedControl and

UsesLicensedControl that demonstrate use of the DlsLicenseProvider class.

To do so, you do the following:

1. Add the LicenseProvider attribute to your component and implement the

IDlsLicensedComponent interface as shown here:

[VB]

<System.ComponentModel.LicenseProvider(GetType(_

Desaware.MachineLicense.DlsProvider))> Public Class LicensedControl1

 Inherits System.Windows.Forms.UserControl

 Implements IDlsLicensedComponent

[C#]

[System.ComponentModel.LicenseProvider(typeof(Desaware.MachineLicense.

 DlsProvider))]public class LicenseControl1 :

 System.Windows.Forms.UserControl, IDlsLicensedComponent

Create an instance of the ClientLicense component. Don‟t just drop it on the control‟s form.

Why? Because licensing of components is done before the controls on the component are

instantiated, so if you just drop it on the form it won‟t actually exist during license verification.

Be sure you added the resource file Test.resx to the component being licensed!

[VB]

Private ClientLicense1 As New ClientLicense("Test")

[C#]

private ClientLicense ClientLicense1 = new ClientLicense("Test");

Implement the IdlsLicensedComponent interface. The LicenseProvider reflects its request for

license keys back to the component. This allows you to make your own logic choices in terms of

when a component should or should not be licensed.

[VB]

Public Function GetLicenseKey(ByVal usage As _

System.ComponentModel.LicenseUsageMode) As String _

Implements IDlsLicensedComponent.GetLicenseKey

 VerifyLicense()

 Return ClientLicense1.RuntimeKey

End Function

Public Function VerifyLicenseKey(ByVal RuntimeKey As String) _

Page 51

As Boolean Implements IDlsLicensedComponent.VerifyLicenseKey

 Dim result As Boolean

 result = ClientLicense1.VerifyRuntimeKey(RuntimeKey)

 Return result

End Function

Private Sub VerifyLicense()

 Static VerificationTested As Boolean

 If Not VerificationTested Then

 ClientLicense1.VerifyLicense(True)

 VerificationTested = True

 End If

End Sub

[C#]

public string GetLicenseKey(System.ComponentModel.

 LicenseUsageMode usage)

{

 VerifyLicense();

 return ClientLicense1.RuntimeKey;

}

public bool VerifyLicenseKey(string RuntimeKey)

{

 bool result;

 result = ClientLicense1.VerifyRuntimeKey(RuntimeKey);

 return result;

}

private void VerifyLicense()

{

 if (!VerificationTested)

 {

 ClientLicense1.VerifyLicense(true);

 VerificationTested = true;

 }

}

The GetLicenseKey function should, by default, return the value of the ClientLicense1

RuntimeKey property. This can be verified in the VerifyLicenseKey function using the

VerifyRuntimeKey method.

The following code simply allows the control to display its current licensing status.

[VB]

Private Sub LicensedControl1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 VerifyLicense()

 lblLicensed.Location = New Point(0, 0)

 lblLicensed.Size = New Size(Width, Height)

Page 52

 If ClientLicense1.Licensed Then

 lblLicensed.Text = "Full license"

 Else

 If ClientLicense1.DemoVersion Then

 lblLicensed.Text = "Demo license"

 Else

 lblLicensed.Text = "No license"

 End If

 End If

 If ClientLicense1.DeferredLicense Then lblLicensed.Text _

 = lblLicensed.Text & " - temp"

End Sub

[C#]

private void LicenseControl1_Load(object sender, System.EventArgs e)

{

 VerifyLicense();

 lblLicensed.Location = new Point(0, 0);

 lblLicensed.Size = new Size(Width, Height);

 if (ClientLicense1.Licensed)

 lblLicensed.Text = "Full license";

 else

 {

 if (ClientLicense1.DemoVersion)

 lblLicensed.Text = "Demo license";

 else

 lblLicensed.Text = "No license";

 }

 if (ClientLicense1.DeferredLicense)

 lblLicensed.Text = lblLicensed.Text + " - temp";

}

Important Note!

When working with components, it‟s important to realize that the location of the license file

when working with .NET needs to be different between design time and runtime.

Why?

Consider a solution where you have both the control and its container loaded and you are

dropping an instance of a licensed control onto the container at design time. Visual Studio will

load the control from the control‟s build directory (obj\debug or obj\release –for VB .Net

developers – not the bin directory!). So that‟s where the license file has to be.

However, at runtime the component will be copied to the executable directory of the container

and will run from there. The component will load – because it has a valid runtime key. However,

the license component will not detect a valid license file unless you‟ve copied it into that

directory as well. But that‟s OK, and what you expect – because the licensing at runtime is based

on the runtime key, which does not require a valid license in order to verify – so the component

will successfully load without a DLSC file.

Page 53

Potential Vulnerabilities

It is important to realize that any system that uses a runtime key suffers from the traditional

vulnerability of any non-server based licensing. It depends on a secret, and thus is subject to

attack.

The Desaware Licensing System does, however, add considerably more security over the

LicFileProvider included with .NET (that really depends purely on trust, since all you need to do

to break it is copy a text file). The security comes from the following:

 The Desaware Licensing System will not provide a runtime key unless you first perform a
VerifyLicense operation which succeeds (with either a signed, or temporary certificate, both

full and demo mode).

 You can improve security further by only returning the runtime key if the design time license
is based on a signed certificate. If you do so, during the VerifyRuntimeKey function you can

ignore any runtime keys that do not begin with the letter “S” (for signed)

 If your component is running under an unsigned license, the runtime key is generated using

an encryption algorithm based on your application‟s password.

 If your component is running under a signed license, the runtime key is provided by the
server, and is itself digitally signed.

 Runtime keys are bound to the component name, but it is potentially possible for a malicious
application to extract a runtime key and use it to enable your component. You can reduce the

chances of this by customizing the runtime key to include additional information, perhaps

binding the key to the container application. Runtime key generation and verification is

reflected to your component, so such customization is not difficult.

Variations

 The .NET LicenseProvider system relies on the host (such as Visual Studio) to
distinguish between runtime and design time. However, there are alternate approaches.

For example: you might license your component so that it requires licensing to run under

a debugger. In that case all you need to do is check for a debugger using the

System.Debugger.IsAttached method. If the result is True, check the licensing component

using VerifyLicense and do whatever you feel is appropriate (like throwing an error) if

the component is unlicensed. This particular variation can be useful for embedded

components in some situations.

 By default, a runtime key is available for both temporary and signed licenses, and to
demo licenses. You can restrict this further in your GetLicenseKey implementation, for

example: only returning runtime license keys if a signed license exists.

 The example shown here does not include installation. We have omitted this information

as you have already seen how installation works.

Page 54

Embedded Components

A significant limitation of the .NET licensing system is that when the host is in design mode, all

components in the project are in design mode. There is no good mechanism for one component

embedded inside another to recognize that it is embedded and be treated as if it were in run mode

within the environment.

In other words – licensing of components that are embedded inside other components is

problematic in the current .NET Framework.

The Desaware Licensing System does not address this scenario. Sorry folks – maybe for the next

version.

Using Custom Data

The Installer sample application also demonstrates use of custom data to perform registration at

the same time as an installation. This is just one possible use of custom data – it is appropriate

for any situation where you wish to provide additional information during registration. There are,

however, some things you must understand about the way custom data works before you design

it into your system.

 Custom data is bound to a unique installation. What does this mean?

o If someone reinstalls the software on the same system, using the same key or a

different key, and provides new custom data, the existing data will be replaced.

o If someone reinstalls the software on the same system, using the same key or a

different key, and provides no custom data, the existing data will remain.

 Custom Data is replaced on a field by field bases. This means that if the licensing system

is replacing existing custom data (due to a reinstall), each key will be replaced

individually – and any keys that are not included on the new install will remain

unchanged if they already exist in the database.

 Custom data is not encrypted in the licensing certificate. This is because the data is
generated on the client system, and is therefore not assumed to be confidential. However,

the custom data is encrypted (along with the entire certificate) when being registered on

the server. If you wish custom data to be encrypted in the certificate, it is up to you to

encrypt it before placing it in the certificate. In that case it will also be encrypted in the

database.

 Custom data only goes in one direction – client to server. If you reinstall a software and
do not provide custom data, any matching custom data on the server will not be added to

the certificate when it is returned to the client.

Page 55

Client Component Reference
The Desaware.MachineLicense component is the client component used for licensing.

ClientLicense Properties

This documentation will not include the methods and properties inherited from the parent

Component class. That information can be found in the MS .NET Framework documentation.

AdditionalSystemIdentifiers [VB] Property AdditionalSystemIdentifiers()

As ISystemIdentifier()

[C#] ISystemIdentifier []

AdditionalSystemIdentifiers

Refer to the section “Extending the

Licensing System” for information on this

property.

ApplicationName [VB] Property ApplicationName as String

[C#] string ApplicationName

Set or retrieve the application name being licensed.

You cannot override the application name set by the

license resource (.resx) file.

ApplicationPassword [VB] Property Password as String

[C#] string Password

Set the secret password for the application that is used

for first pass authentication and for temporary

certificates. You cannot override the application

password set by the license resource file. If you do set

this explicitly, you should take steps to obfuscate your

assembly so it won‟t be obvious.

CustomData [VB] Property CustomData As

StringDictionary

[C#] StringDictionary CustomData

Set or retrieve the custom data for this

certificate. The data in this

StringDictionary is stored unencrypted in

the certificate and is sent with the

certificate to the licensing server upon

activation. The CustomData "key" name has a

maximum length of 64, the "value" data has

a maximum length of 255. Only letters,

numbers and the underscore ('_') are valid

for the CustomData key name. Note that the

StringDictionary object will first

translate the key names to lower case

before adding it to the string dictionary.

Page 56

The CustomData field does not change if you

use the ClientLicense Object to verify a

different license file (such as changing

the ResourceName then calling

VerifyLicense). It retains the previous

string dictionary, you will need to set it

to Nothing before calling VerifyLicense to

verify a different license file.

DeferredLicense [VB] ReadOnly Property DeferredLicensed As

Boolean

[C#] bool DeferredLicensed

Indicates that a temporary license certificate was

found. Valid only after calling the VerifyLicense

method. Applies to both demo and full licenses.

DemoDaysRemaining [VB] ReadOnly Property DemoDaysRemaining As

Integer

[C#] int DemoDaysRemaining

The number of days remaining until a demo

installation expires. Valid only after

calling the VerifyLicense method and when

DemoVersion is True.

DemoExpiration [VB] Property DemoExpiration as Integer

[C#] int DemoExpiration

Set or retrieve the number of days a demo is valid.

Use zero to disable support for demo licensing.

Maximum value is 365. You cannot override the

demo expiration set by the license resource file. This

number will set the demo expiration for a temporary

certificate. For signed certificates, you can use this

property to set a shorter demo duration than specified

in the application database, however you cannot

exceed that value. If you set a higher value than exists

in the database, the signed certificate will have its

expiration date reduced according to the maximum

value in the database.

DemoRequireInternet [VB] Property DemoRequireInternet As

Boolean

[C#] bool DemoRequireInternet

Applicable only for demo licenses. If this property is

set when the VerifyLicense method is called, the

ClientLicense object attempts to retrieve the current

date from a date server on the internet instead of

retrieving the current date from the system date. If the

date could not be retrieved from the internet during

Page 57

VerifyLicense, a DemoNoInternetDate result is
returned.

DemoVersion [VB] ReadOnly Property DemoVersion As

Boolean

[C#] bool DemoVersion

Indicates that a valid demo certificate was found

(temporary or signed). Valid only after calling the

VerifyLicense method.

ExcludeDefaultSystemIdentifiers When set to True, the default system identifiers are

not included in the list of system identifiers used to

identify systems. Use this when you are using the

AdditionalSystemIdentifiers property to define your

own system identifiers, and do not wish to also

include the default identifiers.

The LicensedWebApp sample application

demonstrates how you can use this feature to

implement a license policy that is based purely on

domain or IP address.

ExpirationDate [VB] ReadOnly Property ExpirationDate() As

Date

[C#] DateTime ExpirationDate

Returns the expiration date of this particular demo

install from the license file. Only valid after calling

the VerifyLicense function. If the license file is not a

demo, then this date will be the same as the

InstallationDate.

InstallationDate [VB] ReadOnly Property InstallationDate()

As Date

[C#] DateTime InstallationDate

Returns the installation date of this particular

installation from the license file. Only valid after

calling the VerifyLicense function.

InstallationSerial [VB] ReadOnly Property InstallationSerial()

As String

[C#] string InstallationSerial

Returns a unique GUID value describing this

particular installation. Only valid for signed

certificates, this matches the UniqueInstallGUID in

the license server database (see the section on

Database schema and contents). You might use this

for serial numbers.

Page 58

InstallError [VB] ReadOnly Property InstallError As

InstallErrorResults

[C#] InstallErrorResults InstallError

Contains the most recent result of an Install or

InstallDemo call. Also the result of a completed

deferred installation (background operation).

InstallThread [VB] ReadOnly Property InstallThread As

Thread

[C#] Thread InstallThread

A reference to the background thread when doing a

background install or deferred install (during

verification). Can be used for synchronization

purposes.

Licensed [VB] ReadOnly Property Licensed As Boolean

[C#] bool Licensed

Indicates that a valid license certificate was found

(temporary or signed). Valid only after calling the
VerifyLicense method.

LicenseFilePath [VB] Property LicenseFilePath as String

[C#] string LicenseFilePath

Set or retrieve the path of the license file. If not set,

the license component will make a best guess of

where the license file is (or should go). The

LicenseFilePath is also valid after a successful call

to VerifyLicense.

LicenseServers [VB] Property LicenseServers As String()

[C#] string [] LicenseServers

Set or retrieve a list of URL‟s to license servers. The

component will try all of them until one successfully

licenses the component. You can override the

default license server set by the license resource file

using this property. NOTE: There is no automatic

synchronization if you choose to use more than one

license server. This is intended for advanced users

who can figure out their own synchronization. Or for

scenarios where the license servers are connected to

the same database through the company's back end

(such as in a web farm).

PublicKey [VB] Property PublicKey as String

[C#] string PublicKey

Page 59

Set or retrieve the application name being licensed.

You cannot override the public key set by the

license resource file.

ResourceName

[VB] Property ResourceName As String

[C#] string ResourceName

Set or retrieve the name of the resource file

containing the application name, application

password, public key, demo expiration and default

server URL.

RuntimeKey [VB] ReadOnly Property RuntimeKey As

String

[C#] string RuntimeKey

Returns a runtime key for use with the

DlsLicenseProvider when licensing components.

Only valid after calling the VerifyLicense method

and when either DemoVersion or Licensed are True.

ServerTimeout [VB] Property ServerTimeout as Integer

[C#] int ServerTimeout

The timeout in milliseconds of each server request.

TimeServerSettings [VB] Public Property TimerServerSettings

As TimeServerOptions

[C#] TimeServerOptions TimeServerSettings

The TimeServerOptions enumeration has the

following values:

0 – default – connect to Internet time servers only.

1 – Disable all connection to time servers.

By default, the ClientLicense component always

attempts to reach an external Internet Time server

when performing a verification. The

DemoRequireInternet property specifies whether a

successful connection to an external time server is

required when doing a demo validation – however

the attempt is always made, even on an installation.

Use this option to disable all access to external

Internet time servers. These servers are accessed on

port 13. While this option does reduce the security

of demo licensing (as there is no way for the system

to detect that the user has set back their system

Page 60

date), it does provide support for client scenarios
that have specific security requirements.

In these cases the GetActivationServerTime function

can be used as an alternate mechanism for obtaining

an external date.

ClientLicense Methods

This documentation will not include the methods and properties inherited from the parent

Component class. That information can be found in the MS .NET Framework documentation.

ClientLicense Constructor [VB] Sub New(ByVal ApplicationName As

String, ByVal Password As String, ByVal

PublicKey As String)

[C#] ClientLicense(string ApplicationName,

string Password, string PublicKey)

This constructor allows you to initialize the

ApplicationName, Password and PublicKey values.

ClientLicense Constructor [VB] Sub New(ByVal ResourceName As String)

[C#] ClientLicense(string ResourceName)

This constructor accepts a resource file name. Do not

include the .resx extension in the name. This is the

preferred constructor.

ClientLicense Constructor [VB] Sub New(ByVal ResourceName As String,

ByVal AssemblyContainingResource As

Assembly)

[C#] ClientLicense(string ResourceName,

Assembly AssemblyContain9ingResource)

This constructor accepts a resource file name and a

reference to the assembly containing the resource. Do

not include the .resx extension in the name. This

constructor is generally used when encapsulating the

component into another..

DeleteExistingCertificate [VB] Public Sub

DeleteExistingCertificate(ByVal

IsolatedStorageName As String, ByVal

StorageMode As SaveLicenseModes)

[C#] public void

DeleteExistingCertificate(String

IsolatedStorageName, SaveLicenseModes

StorageMode)

Page 61

Use to delete a certificate from isolated storage.

 The StorageMode parameter should be set to one the

three values: SaveToMachineIsolatedStorage,

SaveToUserIsolatedStorage or

SaveToMachineThenUserIsolatedStorage. Refer to the

description of these values in the documentation for the

SaveLicenseModes enumeration.

The function does not verify the existing certificate and

does not throw an exception or return a result in case of

failure.

GetActivationServerTime [VB] Function

GetActivationServerTime(Optional ByVal

waittime As Integer = 150) As Date

[C#] Date GetActivationServerTime(int

waittime)

Use this function to retreive the current date/time from

your activation server. This can be useful in cases

where port 13 is blocked. The function returns the

value DateTime.MinValue if an error occurs.

Keep in mind that using this function increases the load

on your activation server. This can be significant if you

have a large number of clients (remember, the

Desaware license system was designed to operate in a

largely disconnected manner and thus places a

generally low load on the license server).

You must have the version 1.3 or later license server

installed to use this function.

GetEncryptedServerData [VB] Function GetEncryptedServerData (ByVal

encryptkey As String, ByVal iv() As Byte,

ByVal data As String) As String

[C#] string GetEncryptedServerData (string

encryptkey, byte [] iv, string data)

Decrypts the string specified in data. The encryptkey is

a secret key used to encrypt and decrypt data. The iv

byte array is an initialization vector also used for

encrypting and decrypting data and must be set to

exactly 16 elements. The same encryptkey and iv array

must have been used to encrypt the data or this

function will fail. This function is typically called to

decrypt server data returned in the license file.

This function returns Nothing if it cannot decrypt the

data. This would most likely be caused by a

Page 62

mismatched key or iv, or the incorrect data to decrypt.

NOTE: You can call the EncryptServerData function to

encrypt any data string. But if you want to directly

decrypt the byte array returned by the

EncryptServerData function, you will need to call the

Convert.ToBase64String function to convert the byte

array into a base64 string before passing that string to

this function. This is what the ClientLicense

component does when writing the returned byte array

from the ProvideServerData function.

GetInternetTime [VB] Function GetInternetTime (Optional

ByVal WaitTime As Integer = 150) As Date

[C#] DateTime GetInternetTime (int WaitTime)

Retrieves the current time from an internet time server.
This function will attempt to connect to a list of

internet time servers and retrieve the current time. The

WaitTime parameter is an optional parameter

specifying the maximum wait time in milliseconds for

a connection to be established and data to be returned

on each internet time server before trying the next.

This function returns DateTime.MinValue if it cannot

establish any connection with any of the internet time

servers. If this occurs and an internet connection does

exist, try lengthening the WaitTime and call this

function again.

GetResultDescription [VB] Function GetResultDescription(ByVal

ValidationResult As ValidationStatus) As

String

Function GetResultDescription(ByVal

InstallationResult As InstallErrorResults)

As String

[C#] string GetResultDescription

(ValidationStatus ValidationResult)

string GetResultDescription

(InstallErrorResults InstallationResult)

Returns a plain text description of the results indicated

by the ValidationStatus and InstallErrorResults

enumerations.

InstallDemo [VB] Function InstallDemo(ByVal InstallMode

As InstallationModes) As InstallErrorResults

[C#] InstallErrorResults InstallDemo

(InstallationModes InstallMode)

This function installs a demo license. The

Page 63

DemoExpiration property must be non zero for this
function to succeed. InstallMode is as described for the

InstallLicense method.

Refer to the InstallErrorResults enumeration for

specifics on possible results.

InstallLicense [VB] Function InstallLicense(ByVal

InstallationCode As String, ByVal

InstallMode As InstallationModes) As

InstallErrorResults

[C#] InstallErrorResults InstallLicense

(string InstallationCode, InstallationModes

InstallMode)

This function installs a license. The InstallationCode is

a properly formatted installation key. InstallMode can

be one of the following:

SyncActivationRequired – Performs a synchronous

connection to the server to register the license.

Licensing will fail if the server cannot be reached.

SyncAllowDeferred – Performs a synchronous

connection to the server to register the license. Will

store a temporary license if the server cannot be

reached.

AsyncAllowDeferred – Performs an asynchronous

connection to the server to register the license. Stores a

temporary license before the asynchronous call, and

replaces it with a signed one if the server connection is

successful. Deletes the temporary license if the

installation code is blocked or invalid

Refer to the InstallErrorResults enumeration for

specifics on possible results.

StoreOrUpdateSignedCertificate [VB] Public Function

StoreOrUpdateSignedCertificate(ByVal

IsolatedStorageName As String, ByVal

StorageMode As SaveLicenseModes, ByVal doc

as XmlDocument) As InstallErrorResults

[C#] public InstallErrorResults

StoreOrUpdateSignedCertificate(String

IsolatedStorageName, SaveLicenseModes

StorageMode, XmlDocument doc)

Use to store a signed certificate to isolated storage after

it has been signed remotely. If the

IsolatedStorageName parameter is null, the default

isolated storage name will be used (the default is

License\appname.dlsc where appname is your

Page 64

application name).

The StorageMode parameter should be set to one the

three values: SaveToMachineIsolatedStorage,

SaveToUserIsolatedStorage or

SaveToMachineThenUserIsolatedStorage. Refer to the

description of these values in the documentation for the

SaveLicenseModes enumeration.

This function first verifies the signed license. Returns a

result of InvalidCertificate or CertSaveError on error.

Use the VerifyLicense function if necessary to

determine the validation error that caused the

InvalidCertificate error.

VerifyAndRetrieveUnsignedCertificate [VB] Public Function

VerifyAndRetrieveUnsignedCertificate(ByVal

IsolatedStorageName As String, ByVal

StorageMode As SaveLicenseModes) As

XmlDocument

[C#] public XmlDocument

VerifyAndRetrieveUnsignedCertificate(String

IsolatedStorageName, SaveLicenseModes

StorageMode)

Use to retrieve an unsigned certificate from isolated

storage in order to sign remotely. If the

IsolatedStorageName parameter is null, the default

isolated storage name will be used (the default is

License\appname.dlsc where appname is your

application name).

The StorageMode parameter should be set to one the

three values: SaveToMachineIsolatedStorage,

SaveToUserIsolatedStorage or

SaveToMachineThenUserIsolatedStorage. Refer to the

description of these values in the documentation for the

SaveLicenseModes enumeration.

This function first verifies the unsigned license and

makes sure that it is unsigned. Returns the

XmlDocument of the certificate on success (use the

XmlDocument.Save method to save the file for

transfer).

If an error occurs, a MachineLicenseException

exception will be thrown.

VerifyInstallationCode [VB] Function VerifyInstallationCode(ByVal

InstallCode As String) As Boolean

[C#] bool VerifyInstallationCode(string

InstallCode)

Page 65

Does a first pass verification of an installation code
based on the application name and password. Used by

the CodeEntryControl to determine if a password is

valid. Does not perform verification against the license

server.

VerifyLicense [VB] Public Function VerifyLicense(ByVal

DeferredCheckInBackground As Boolean) As

ValidationStatus

[C#] public ValidationStatus

VerifyLicense(bool

DeferredCheckInBackground)

Verifies a license. If a temporary certificate is present,

this function will try to register it with the licensing

server. If DeferredCheckInBackground is True, the

registration attempt will happen asynchronously, and

this function will return a result based upon the

temporary certificate.

Refer to the ValidationStatus enumeration for specifics

on possible results.

VerifyLicense (override) [VB] Public Function VerifyLicense(ByVal

DeferredCheckInBackground As Boolean, ByVal

IsolatedStorageName As String, ByVal

StorageMode As SaveLicenseModes) As

ValidationStatus

[C#] public ValidationStatus

VerifyLicense(bool

DeferredCheckInBackground, String

IsolatedStorageName, SaveLicenseModes

StorageMode)

Verifies a license. If the IsolatedStorageName

parameter is null, the default isolated storage name will

be used (the default is License\appname.dlsc where

appname is your application name).

The StorageMode parameter should be set to one the

three values: SaveToMachineIsolatedStorage,

SaveToUserIsolatedStorage or

SaveToMachineThenUserIsolatedStorage. Refer to the

description of these values in the documentation for the

SaveLicenseModes enumeration.

Refer to the ValidationStatus enumeration for specifics

on possible results.

VerifyLicense (override) [VB] Public Function VerifyLicense(ByVal

DeferredCheckInBackground As Boolean, ByVal

SourceDocument As XmlDocument) As

ValidationStatus

Page 66

[C#] public ValidationStatus

VerifyLicense(bool

DeferredCheckInBackground, XmlDocument

SourceDocument)

Verifies a license. Use this override to verify a

certificate saved using the CustomSave option. Before

calling this function, load the externally stored data

into an XMLDocument object.

VerifyRuntimeKey [VB] Function VerifyRuntimeKey(ByVal

runtimekey As String) As Boolean

[C#] bool VerifyRuntimeKey(string

runtimekey)

Verifies a runtime key. Used with the

DlsLicenseProvider class.

ClientLicense Events

This documentation will not include the methods and properties inherited from the parent

Component class. That information can be found in the MS .NET Framework documentation

DeferredInstallComplete [VB] Event DeferredInstallComplete(ByVal

Sender As Object, ByVal e As

ClientLicenseEventArgs)

[C#] DeferredInstallComplete (object Sender,

ClientLicenseEventArgs e)

This event is raised on completion of a background

(asynchronous) activation. The

ClientLicenseEventArgs object contains one property

of interest:

InstallResults – An InstallErrorResults enumeration

indicating the result of the attempted install.

SaveLicense [VB] Event SaveLicense(ByVal Sender As

Object, ByVal e As SaveLicenseEventArgs)

[C#] SaveLicense (object Sender,

SaveLicenseEventArgs e)

This event is raised after a license has been issued but

before it is stored. It allows the application the

opportunity to modify the storage of the license

certificate by modifying parameters of the

SaveLicenseEventArgs object. The

SaveLicenseEventArgs object has the following

Page 67

properties:

SaveLicenseMode – A SaveLicenseModes

enumeration value. Set this value to the desired

storage mode.

LicenseFilePath - When the SaveLicenseMode

property is 0 (SaveToDisk), this property contains the

current (default) path to the license file. You can

modify this to save the file to a different location. Note

that modifying this file does not modify the

LicenseFilePath property of the licensing component –

this is a temporary change just for this file.

IsolatedStorageName - When the SaveLicenseMode

property is 2, 3 or 4 (SaveToMachineIsolatedStorage,

SaveToUserIsolatedStorage or

SaveToMachineThenUserIsolatedStorage), this

property contains the file name that will be used to

store the certificate in isolated storage. You can

modify this file name if you wish.

XMLDoc - This property will always contain the

XMLDocument object of the license certificate itself.

When the SaveLicenseMode property is 1

(CustomSave) it is your responsibility to store the

contents of this object in the manner you desire.

Typically you can use the object‟s Save method to

save the contents to a stream which can be a file or

memory stream which can then be stored in the

location you choose. You can also use the OuterXml

property to obtain a string containing the XML for the

document.

Do not modify the contents of this document.

Note that the property is a copy of the one used within

the licensing component, so any attempts to modify

the contents will have no effect in any mode other than

CustomSave, and in that mode, changes to signed

certificates will invalidate the certificate.

DoNotOverwriteExistingLicense - When the

SaveLicenseMode property is 1 (CustomSave),

examine this property to determine how to handle

existing licenses. When True, if a license currently

exists you should not overwrite it. This will typically

happen when the new license is a demo certificate but

the existing one is a full license (an attempt to install a

demo on a fully licensed system).

Page 68

KillRecentLicense [VB] Event SaveLicense(ByVal Sender As

Object, ByVal e As SaveLicenseEventArgs)

[C#] SaveLicense (object Sender,

SaveLicenseEventArgs e)

This event is raised when an existing license needs to

be deleted. This will only occur when a temporary

license has been just installed and activation fails due

to an invalid or blocked code.

This event includes a SaveLicenseEventArgs

parameter as well that is a copy of the one actually

used to create the certificate (during the previous

SaveLicense event).

If the SaveLicenseMode property is 0 (CustomSave),

it is your responsibility to delete the previously created

temporary certificate.

Changes to the SaveLicenseEventArgs parameter

during this event have no effect.

SaveLicenseModes Enumeration

SaveToDisk = 0 This is the default value. During the

SaveLicense event, setting this value

indicates the license file should be saved

to disk in the location specified by the

LicenseFilePath property.

CustomSave = 1 During the SaveLicense event, setting

this value indicates that you wish to store

the certificate. When set, the licensing

component will not store the license. In a

typical application you might use this

option to store the certificate in an

external database. The certificate can be

found in the XMLDoc parameter.

SaveToMachineIsolatedStorage = 2 During the SaveLicense event, setting

this value indicates that the license file

should be stored to isolated storage based

on the application, domain and machine

user (i.e., all users). The name of the

isolated storage file is specified by the

IsolatedStorageName property which is

set by default to License\appname.dlsc

but can be overridden (where appname is

your application name). This is the

Page 69

preferred storage mode for web
applications and services intended to be

installed on hosted sites (where you are

doing FTP deployment rather than using

an installer package).

SaveToUserIsolatedStorage = 3 During the SaveLicense event, setting

this value indicates that the license file

should be stored to isolated storage based

on the application, domain and current

user. The name of the isolated storage file

is specified by the IsolatedStorageName

property which is set by default to

License\appname.dlsc but can be

overridden (where appname is your

application name). This setting is rarely

used, as in most cases it is desirable to

license an application to all users rather

than a single user.

SaveToMachineThenUserIsolatedStorage

= 4

During the SaveLicense event, setting

this value indicates that the license file

should be stored to isolated storage based

on the application, domain and machine

user (i.e., all users), but if that fails to

store it based on the current user. The

name of the isolated storage file is

specified by the IsolatedStorageName

property which is set by default to

License\appname.dlsc but can be

overridden (where appname is your

application name). This is an alternate

storage mode for web applications and

services intended to be installed on

hosted sites (where you are doing FTP

deployment rather than using an installer

package), to handle cases where security

does not permit access to the machine

isolated storage. Because hosted sites

typically run under a single user account

(ASPNET or NETWORK_SYSTEM)

user isolated storage is typically as

effective as machine storage.

Page 70

ValidationStatus Enumeration

The ValidationStatus enumeration defines the possible results of a call to the

ClientLicense.VerifyLicense method.

Result Definition

Success = 0 Successful verification of a signed demo or full

license (use the ClientLicense DemoVersion or

Licensed properties to determine which one).

TempSuccess = 1 Successful verification of temporary demo or full

license (use the ClientLicense DemoVersion or

Licensed properties to determine which one).

MissingOrIncorrectApplication = 2 The certificate is missing the application element,

or it does not match the application name specified

for this ClientLicense component.

SignatureVerificationError = 3 The digitally signed certificate is invalid or has

been modified.

InvalidCertificate = 4 The format of the license certificate is invalid.

MissingInstallKey = 5 The Install key is missing on an application that

does not support demonstration licenses.

IncorrectSystem = 6 The license certificate is not valid on this machine.

DemoExpired = 7 The demo license has expired.

DemoNoInternetDate = 8 An internet connection is required to verify the

current date for this demo certificate but a

connection could not be established with an

internet date server.

InstallErrorResults Enumeration

The InstallErrorResults enumeration defines the possible results of a call to the ClientLicense

InstallLicense or InstallDemo methods. It is also used in the DeferredInstallComplete event, and

with the InstallError property.

Values under FatalError are informational only and represent successful installations.

Result Definition

NoError = 0 Successful registration.

Page 71

CodeReuseWarning = 1 Successful registration. The installation code
has been used on a number of unique machines

that exceeds the number specified by the

Warning entry in the server database.

DeferServerError = 2 Successful registration of a temporary

certificate. The server cannot be reached for

registration. Can occur when

SyncAllowDeferred is set as the installation

mode.

AsyncRequestStarted = 3 Successful registration of a temporary

certificate. A request to register on the server

has started. Typically occurs when

AsyncAllowDeferred is set as the installation

mode.

NoLicenseServer = 4 Successful registration of a temporary

certificate. No license servers can be reached.

DemoInstallOnPrevRegisteredSystem = 5 A demo installation has been successfully

completed on a system that is registered in the

server as already having a full installation. The

component will not overwrite an existing full

license file with a demo license file. See

DemoInstallOnRegisteredSystem.

FatalError = 99 Marker – not returned as a result.

InvalidCode = 100 The installation code is invalid.

CodeReuseBlocked = 101 The installation code has been used on a

number of unique machines that exceeds the

number specified by the Block entry in the

server database.

InvalidCertificate = 102 Registration failed. The certificate or public

key is invalid.

ServerError = 103 Registration failed. The server is unable to

process the request at this time.

NoSuchApplication = 104 Registration failed. The server does not have

an entry for this application.

DemoInstallOnRegisteredSystem = 105 Registration failed. The current machine

already has a full license. The component will

not overwrite an existing full license file with a

demo license file.

DemoExpired = 106 Registration failed. This system is already

registered has having a demo installation for

Page 72

this application that has expired.

CertSaveError = 107 Registration failed. Unable to save the license

certificate.

NoOperationCalled = 108 VerifyLicense, InstallLicense or InstallDemo

have not yet been called.

The CodeEntryControl

The CodeEntryControl control is a simple control for entering and validating installation codes.

This documentation will not include the methods and properties inherited from the parent

Component class. That information can be found in the MS .NET Framework documentation

It is possible to paste values into the CodeEntry control, however the paste operation will only

work once every 500ms. Additional attempts will be ignored.

CodeEntryControl Properties

License [VB] Property License As ClientLicense

[C#] ClientLicense License

Set this property to an existing ClientLicense

component to have the control perform immediate first

pass verification of installation codes.

InstallCode [VB] Property InstallCode() As String

[C#] string InstallCode

Use to retrieve a properly formatted installation code.

Returns Nothing if the code is not 26 characters long

and passes first pass validation.

For security reasons, this property can only be set once

every 500ms. Values set more frequently will be

ignored.

ToolTip [VB] Property ToolTip As String

[C#] String ToolTip

set the tooltip that appears over the control (including

all of the text boxes in the control).

CodeEntryControl Methods

ClearText [VB] Sub ClearText ()

[C#] void ClearText()

Page 73

Clears all the text fields for the CodeEntryControl.

CodeEntryControl Events

LicenseCodeEntered [VB] Event LicenseCodeEntered(ByVal Sender

As Object, ByVal e As CodeEntryEventArgs)

[C#] event LicenseCodeEntered (object

Sender, CodeEntryEventArgs e)

This event is raised any time the known first pass

validation status of the contents of the control changes.

The CodeEntryEventArgs parameter contains two

important parameters:

ValidationChecked indicates that the results were

verified against the ClientLicense component specified

by the License property. It will always be True if the

License property is set.

IsValid indicates that the current contents of the

control represents a valid license key based on a first

pass verification (does not include verification against

the server‟s list of allocated installation codes).

Additional Information

The following additional information will help you make full use of the MachineLicense

component.

Code Access Security

The Client licensing component requires full trust in order to work correctly. However, once you

have installed it on a system (for example: in the GAC), it can be used to implement licensing for

partially trusted components.

How the Component is Licensed

The MachineLicense component is itself licensed on a per machine/server basis. You can

distribute it freely with your applications. Note, however, that any attempt to perform an Install

operation using the component while running under a debugger requires the component to be

licensed on that system.

Code Reuse Blocking

In order to reduce the chance of performance bottlenecks, the licensing server does not lock

access to the installation key database between the time it extracts verification information, and

updates the database with a new registration. In other words, there is a finite possibility that two

different systems using the same installation code will both be allowed to install even if this

would cause the number of uses for the key to be exceeded.

Page 74

For this reason, we do not absolutely guarantee that the code reuse blocking value will be

enforced. However, for this problem to occur two requests on the same installation key would

have to arrive and be processed virtually simultaneously – an event unlikely to occur in practice.

When this problem does occur, the next request will be correctly blocked.

Page 75

The WebCodeEntry Control
The WebCodeEntryControl is a new ASP .NET server control that is designed for entering

installation codes. It supports many of the same features as the existing CodeEntryControl

including automatic navigation between the text entry boxes, paste operations, and AJAX based

code validation with the ability to enable a secondary control such as a command button when a

code is valid.

Using the Desaware.WebCodeEntry control

The Desaware.WebCodeEntry control is contained in the assembly

Desaware.WebCodeEntry.dll. To use the control, add a reference to the assembly from your web

application or service.

You can add ASP .NET web pages to web service projects.

After adding a reference, the component should appear in your toolbar and can be dragged onto

an ASP .NET web form.

The advanced functionality of the control will only work if JavaScript is enabled on the browser.

When a form containing the control is submitted, the InstallCode property will contain the

installation code that was entered.

Desaware.WebCodeEntry control properties

ClientLicense Set this property to an instance of a ClientLicense object if

you want to enable automatic first-pass validation of entered

codes. If this property is not set, any 26 character text string

will be considered valid and returned in the InstallCode

property.

InstallCode Readonly property. Will return a properly formatted

installation code if a valid code was entered. If a

ClientLicense component was assigned to the ClientLicense

property, this property will return a value only if it passes

first pass validation of the code value. Otherwise, any 26

character code will be considered valid.

EnableControl String property containing the ID attribute for another

control on the form. The control (typically a command

button, but can be any control with a disabled property) will

be enabled when the control is empty, or has a valid

installation code.

Refer to the LicensedWebApp sample application for an example of using the control.

Client Side Support

The WebCodeEntry control provides limited client side code support in addition to the server

side features. You can add a reference to the method “LicenseCodeEntered” to the control in

Page 76

order to receive notification as to when a valid license code has been entered. The following

code illustrates how you can attach a notification handler, then retrieve a license code and store it

in a text control when the notification arrives:

 <script language="javascript">

 function codeentered(codevalue)

 {

 document.getElementById("TextBox1").value = codevalue;

 }

 WebCodeEntryControl1.LicenseCodeEntered = codeentered;

 </script>

Page 77

Web Service Reference
The first thing you should know about the web service reference is, you may never need it. This

is designed for people who wish to create their own management interface instead of using the

License Manager application we provide, or to extend the License Manager.

Connecting to the Web Service

In order for .NET to automatically create a proxy to a web service, it‟s wsdl information must be

available. By default, we disable this for security reasons. In order to reenable this, comment out

or delete the <wsdlHelpGenerator> element in the webServices section of the server‟s

Web.Config file as described here.

<!-- If you are adding your own web reference (to create your own management

extensions you must comment out the following lines_in order to obtain the

WSDL needed to build the proxy

-->

<webServices>

 <wsdlHelpGenerator href="helppage.htm" />

</webServices>

You can re-enable security after the proxy is created.

Web Service Methods

Because we only expect advanced users to connect directly to the service, the methods of the

service were designed for efficiency (to minimize round-trips), and not necessarily for ease of

use.

Management Web Service

GetApplicationResX [VB] Function GetApplicationResX(ByVal

ApplicationName As String, ByVal ServerUrl As

String) As Byte()

[C#] byte [] GetApplicationResX(string

ApplicationName, string ServerUrl)

This method is used to retrieve a resource file for an

application (the .resx file used by the client license

component). The ServerUrl is the URL you are using to

access the server. It will be embedded in the resource.

You can save the file by creating a FileStream object to a

.resx file and writing it as follows:

fw.Write(rx, 0, rx.Length)

GetApplicationList [VB] Function GetApplicationList() As DataSet

[C#] DataSet GetApplicationList()

Page 78

Returns a DataSet containing a list of all applications

defined on the server. Contains one table on success.

Columns are:

ApplicationName: The short name of the application.

ApplicationDescription: The description of the

application.

CreateNewApplication [VB] Sub CreateNewApplication(ByVal

ApplicationName As String, ByVal Description As

String, ByVal warningcount As Integer, ByVal

blockcount As Integer, ByVal demoexpiration As

Integer, ByVal password As String)

[C#] CreateNewApplication(string

ApplicationName, string Description, int

warningcount, int blockcount, int

demoexpiration, string password)

Creates a new application on the current server. Refer to the

database schema for descriptions of each parameter (which

corresponds to columns in the Application table). The

password field may be null, in which case the service will

create a random password. We recommend that approach.

GetApplicationInfo [VB] Function GetApplicationInfo(ByVal

ApplicationName As String) As DataSet

[C#] DataSet GetApplicationInfo(string

ApplicationName)

Retrieves information about an application. The

DataSet contains a single table and a single row

on success. Refer to the Application table

schema for descriptions of each column. All of

the columns in the Application table are

returned, except that only the public key part

of the signature key is returned.

CreateInstallationCodes [VB] Function CreateInstallationCodes(ByVal

ApplicationName As String, ByVal Count As

Integer) As String()

[C#] string [] CreateInstallationCodes(string

ApplicationName, int Count)

Creates new installation codes for the specified application

and returns them in a string array. Specify the number of

codes in the Count parameter.

GetExistingInstallCodes [VB] Function GetExistingInstallCodes(ByVal

appname As String, ByVal filter As String) As

DataSet

[C#] DataSet GetExistingInstallCodes(string

appname, string filter)

Page 79

Retrieves a set of existing installation codes for an
application. The filter parameter can contain up to 5 letters

that start the installation code you‟re looking for, or * to

retrieve all codes for the application.

Refer to the InstallationCodes table schema for descriptions

of each column. All of the columns in the InstallationCodes

table are returned. An additional column “InstallationCode”

is included in the data set that contains the 26 character

installation code.

SetInstallCodeProperty [VB] Sub SetInstallCodeProperty(ByVal

InstallGuid As String, ByVal PropertyName As

String, ByVal PropertyValue As Object)

[C#] SetInstallCodeProperty(string InstallGuid,

string PropertyName, object PropertyValue)

Use this method to set fields in the InstallationCodes table.

The InstallGuid value can be obtained using the

GetExistingInstallCodes method. The PropertyName is the

column to change. The PropertyValue is the new value to

enter.

This method is typically used to set the Warning Count,

Block Count or user defined data for the installation code.

The CodeGUID, ApplicationName and CodeStart fields

cannot be modified using this function.

GetInstallKeyInfo [VB] Function GetInstallKeyInfo(ByVal Appname As

String, ByVal InstallCode As String) As DataSet

[C#] DataSet GetInstallKeyInfo(string Appname,

string InstallCode)

This method retrieves detailed information about the use of

the specified installation code. The Appname represents the

application name. The InstallCode is the 26 character

installation code.

The DataSet contains one table. Each row represent an entry

with the following information:

 InstallationCodes.WarningCount

 InstallationCodes.BlockCount

 InstallationCodes.UserDefined

 All fields from the UniqueInstalls table.

 CustomData.CustomName

Page 80

 CustomData.CustomValue

Each unique installation that uses the code is included in the

results, with one line for each element of custom data

associated with that installation.

For you SQL mavens, here‟s the query we use:

SELECT InstallationCodes.WarningCount,

InstallationCodes.BlockCount,

InstallationCodes.UserDefined, "UniqueInstalls.*,

CustomData.CustomName, CustomData.CustomValue

FROM InstallationCodes INNER JOIN (UniqueInstalls

LEFT JOIN CustomData ON

UniqueInstalls.UniqueInstallGUID =

CustomData.UniqueInstallGUID) ON

InstallationCodes.CodeGUID = UniqueInstalls.CodeGUID

WHERE (((InstallationCodes.CodeGUID)='installcode'))

GetInstallKeyInfo2 [VB] Function GetInstallKeyInfo2(ByVal Appname

As String, ByVal InstallCode() As String) As

DataSet

[C#] DataSet GetInstallKeyInfo(string Appname,

string [] InstallCode)

Similar to GetInstallKeyInfo, this method retrieves detailed

information about the use of the specified installation codes.

The Appname represents the application name. The

InstallCode array contains a list of the 26 character

installation code to retrieve detailed information for.

The DataSet contains one table. Each row represent an entry

with the following information:

 InstallationCodes.CodeGUID – the text returned by
this field is not the same as what is saved in the DB.

The actual installation key code is returned in this

field rather than a GUID representation of it.

 InstallationCodes.WarningCount

 InstallationCodes.BlockCount

 InstallationCodes.UserDefined

 All fields from the UniqueInstalls table.

 CustomData.CustomName

 CustomData.CustomValue

Each unique installation that uses the code is included in the

Page 81

results, with one line for each element of custom data
associated with that installation.

Unlike the GetInstallKeyInfo function, this query will result

in information for a key even if it has not been used yet in

an installation.

For you SQL mavens, here‟s the query we use (the WHERE

term is extended to include all install codes specified in the

function parameter):

"SELECT InstallationCodes.CodeGUID,

InstallationCodes.WarningCount,

InstallationCodes.BlockCount,

InstallationCodes.UserDefined,

UniqueInstalls.UniqueInstallGUID,

UniqueInstalls.DemoExpiration,

UniqueInstalls.InstallationDate, CustomData.CustomName,

CustomData.CustomValue FROM InstallationCodes LEFT

JOIN (UniqueInstalls LEFT JOIN CustomData ON

UniqueInstalls.UniqueInstallGUID =

CustomData.UniqueInstallGUID) ON

InstallationCodes.CodeGUID = UniqueInstalls.CodeGUID

WHERE (((InstallationCodes.CodeGUID)='installcode')"

DevUtilities [VB] Function DevUtilities(ByVal op As Integer)

As Object

[C#] object DevUtilities(int op)

Call this method with op = 0 to verify or create the

necessary tables on a database. You may need to use this if

the installation program is unable to initialize the tables.

Call this method with op = 1 to determine if the licensing

server is licensed for single application or full functionality.

Returns the string “single” for single application, “full” for

full license, and “error” if there is an error (typically a

security violiation – use the Diagnostics function to obtain

details).

SignAndRegisterDLSC [VB] Function SignAndRegisterDLSC(ByVal AppName

As String, ByVal datastream As String, ByVal

BackupInstallCode As String, ByRef SignResults

As SigningResults) As String

[C#] string SignAndRegisterDLSC(string AppName,

string datastream, string BackupInstallCode,

SigningResults SignResults)

Use to sign a temporary DLSC file, using system identifiers

in the existing file (rather than those on the current system).

To load the Datastream string, load an existing temporary

Page 82

DLSC file using XmlDocument.Load, then use
XmlDocument.Save to save it into a string (using a

StringWriter object).

If the certificate is not a demo certificate, the installation

code within the certificate is used. Otherwise the

BackupInstallCode (if present) is used. The results are of

type SigningResults. Refer to the InstallErrorResults

enumeration description for the meanings of the

SigningResults enumeration values (note the numeric values

differ between this enumeration and the InstallErrorResults

enumeration).

The return value is a string which can be loaded into an

XmlDocument using the XmlDocument.LoadFrom method,

then saved to a file using XmlDocument.Save.

Test [VB] Function Test() As String

[C#] string Test()

Simple test to check whether or not you have access to the

licensing server. Returns empty string on success, returns

“error” if you do not have access to the licensing server.

Diagnostics [VB] Function Diagnostics () As String

[C#] string Diagnostics ()

Performs advanced diagnostic checks. Returns expanded

trace diagnostic errors. Note that the web.config file now

has diagnostics turned on by default. You need to disable

this when done testing (look for the key <add

key="enablediagnostics" value = "true" /> and set the

value to "false").

Activator Web Service

GetServerDate [VB] Function GetServerDate() As Date()

[C#] DateTime GetServerDate()

This method is used to retrieve the current system date on

the license server.

If there is an active internet connection on the system your

application is running on, you can use this method to

retrieve the system date from another source when testing

for any types of date expiration. To ease the load on your

server, we recommend using the GetInternetTime function

from the ClientLicense object as an alternative.

Page 83

Extending the Licensing System
There are four areas where the Desaware Licensing System can be extended

1
:

System Identifiers Generating data that uniquely identifies a system.

System Matching Algorithms The algorithms that decide if two systems are

identical.

Post Installation Actions Performing actions after an installation.

Adding data to license certificates Add server data to the client‟s license certificate.

System Identifiers

A System Identifier is a value that has a high probability of uniquely identifying a system. Some

system identifiers provide an extremely high probability of being unique – the MAC value of an

Internet adapter is universally unique for example. Others, like the server name, are less likely to

be unique. The actual determination of whether two systems match depends on the system

matching algorithm in use (which will be described later).

Each system identifier consists of a name and value. The name can be any descriptive name

containing letters and numbers of up to 50 characters (no spaces).

The value should be a Base64 representation of a 256 bit hash of the value. Using a hash in this

manner allows you to uniquely identify a system on the server, without actually sending any

information that might violate the client,s privacy.

The Samples\Advanced\SystemIds project demonstrates how to use custom system identifiers.

Define a class that implements the ISystemIdentifiers interface. This interface contains two

properties. The Name property should return the name of the identifier. The Values property

returns an array of system identifiers values corresponding to that name. In most cases this will

be one value, but in others there may be multiple values (i.e. a system that has more than one

network card would return the address of each card in the system).

[VB]

Imports System.Security.Cryptography

Public Class NewSystemId

 Implements Desaware.MachineLicense.ISystemIdentifier

 Shared Sub New()

 AppDomain.CurrentDomain.SetPrincipalPolicy(_

 System.Security.Principal.PrincipalPolicy.WindowsPrincipal)

 End Sub

 Public ReadOnly Property Name() As String _

 Implements Desaware.MachineLicense.ISystemIdentifier.Name

 Get

1
 You can also purchase a site/source license that allows you to customize any part of the licensing system.

Page 84

 Return "User"

 End Get

 End Property

 Public ReadOnly Property Values() As String() _

 Implements Desaware.MachineLicense.ISystemIdentifier.Values

 Get

 Dim UniqueString As String = _

 Principal.WindowsIdentity.GetCurrent.Name

 Return New String() {GetHash256OfString(UniqueString)}

 End Get

 End Property

 Private Function GetHash256OfString(ByVal source As String) _

 As String

 Dim sh As New SHA256Managed()

 Dim b() As Byte

 sh.ComputeHash(System.Text.ASCIIEncoding.ASCII.GetBytes(_

 source))

 b = sh.Hash

 sh.Clear()

 Return (Convert.ToBase64String(b))

 End Function

End Class

[C#]

public class NewSystemId:ISystemIdentifier

{

 static NewSystemId()

 {

 AppDomain.CurrentDomain.SetPrincipalPolicy(

 System.Security.Principal.PrincipalPolicy.

 WindowsPrincipal);

 }

 public string Name

 {

 get

 {

 return "User";

 }

 }

 public string[] Values

 {

 get

 {

 string UniqueString = System.Security.Principal.

WindowsIdentity.GetCurrent().Name;

 return new String[] {GetHash256OfString(UniqueString)};

 }

 }

 private string GetHash256OfString(string source)

Page 85

 {

 SHA256Managed sh = new SHA256Managed() ;

 Byte[] b;

 sh.ComputeHash(System.Text.ASCIIEncoding.ASCII.

 GetBytes(source));

 b = sh.Hash;

 sh.Clear();

 return (Convert.ToBase64String(b));

 }

}

The SystemIds project is substantially the same as the High Security project described earlier. To

use the new system identifier, the following code is added to the form‟s Load event.

[VB]

Dim NewIdentifiers(0) As ISystemIdentifier

NewIdentifiers(0) = New NewSystemId()

ClientLicense1.AdditionalSystemIdentifiers = NewIdentifiers

[C#]

ISystemIdentifier[] NewIdentifiers = new ISystemIdentifier[1];

NewIdentifiers[0] = new NewSystemId();

ClientLicense1.AdditionalSystemIdentifiers = NewIdentifiers;

This code should be executed before a verification takes place.

System Matching Algorithms

The System Matching algorithm determines whether two systems are identical for the purpose of

licensing. Each license certificate contains the system identifiers for the system on which it is

installed. The System Matching algorithm is executed both on the client and server. On the

client, it verifies that the certificate belongs to the system on which it is running. On the server, it

determines whether an installation code is being used on a new system, or upon one which it has

already been used.

The System Matching algorithm actually implements two separate comparisons – Installation

match and Demo match. It is important to understand both.

Installation Match Algorithm

An installation match test answers the question: “Are these two systems possibly the same?”.

This algorithm allows you to take into account the possibility of hardware or configuration

changes on a system by making the matching less restrictive. On the client, if a certificate passes

this test, it is considered valid for this system. On the server, if an installation request comes in

for a particular installation code, and another use of that code is found with system identifiers

Page 86

that match using this algorithm, the server assumes it is a reinstall of the code on an existing

system, and not a new use of the installation code.

The key thing to remember about the Installation Match algorithm is that it should be the most

forgiving. It errs in the side of finding a match.

The default Installation Match algorithm checks all system identifiers and considers two systems

a match if any one identifier matches.

When an installation match occurs, a demo match is also performed. If the demo match succeeds,

the system assumes a higher degree of confidence that the two systems match, so any custom

data provided is updated in the database for this installation. If the demo match fails, the database

is not updated with custom data, the installation is not counted against the number of allowed

installations for the code, and the system identifier list for the installation is not updated. In other

words, when performing a match, later installations are always compared against the first

installation – not any subsequent installations that are allowed

Demo Match Algorithm

The demo match test answers the question: “Are you absolutely certain these two systems are the

same?”. This test is not used on the client.

On the server, this test is used in two places:

 During a demo installation, if an exact match is found for these system identifiers, the
installation found is checked to see if it had previously had a demo installed that has

expired. If so, a demo expiration error is returned. This is the primary use of this

algorithm – hence the name.

 During an full installation, if an exact match is found for the current installation code, the
server assumes the two systems are identical and updates any existing custom data on the

server

The default Demo Match algorithm checks all system identifiers and considers two systems a

match if all of the identifiers match.

Defining a Custom System Match Algorithm

You might want to define your own system match algorithm in order to strengthen security or

adapt it to your own needs. It is important that you implement the same algorithm on both the

client and server (though, as you‟ll note, the method with which you install matching algorithms

differs between the two).

To implement a System Match Algorithm, you must first add a reference to the assembly

Desaware.Dls.Interfaces.dll. This assembly contains a number of interfaces and class definitions

that are common to both the client and server, including those used for System Match

information.

You then define a class that implements the Desaware.Dls.ISystemMatch interface.

In the example that follows, also in the SystemIds project, a very strict form of security is

implemented which is based upon both the User system identifier defined earlier, and the

network card address. Both the Demo Match and Installation Match algorithms are the same –

Page 87

basically saying that for two systems to match, the user name and at least one network card

address must match. If either does not match, the systems will be considered different.

[VB]

Imports Desaware.Dls

Public Class NewSystemMatch

 Implements Desaware.Dls.ISystemMatch

 Public Function CheckDemoMatch(ByVal Identifiers() As _

 SystemIdentifierInfo, ByVal ExistingEntries() As _

 SystemIdentifierInfo) As Boolean _

 Implements ISystemMatch.CheckDemoMatch

 Dim thisidentifier, testidentifier As SystemIdentifierInfo

 Dim nicmacvalid, uservalid As Boolean

 For Each thisidentifier In Identifiers

 If thisidentifier.Name = "User" Then

 For Each testidentifier In ExistingEntries

 If thisidentifier.Value = testidentifier.Value Then

 uservalid = True

 Exit For

 End If

 Next

 End If

 If thisidentifier.Name = "NICMAC" Then

 For Each testidentifier In ExistingEntries

 If thisidentifier.Value = testidentifier.Value Then

 nicmacvalid = True

 Exit For

 End If

 Next

 End If

 Next

 If uservalid AndAlso nicmacvalid Then Return True

 End Function

 Public Function CheckInstallationMatch(ByVal Identifiers() _

 As SystemIdentifierInfo, ByVal ExistingEntries() As _

 SystemIdentifierInfo) As Boolean Implements _

 ISystemMatch.CheckInstallationMatch

 Return CheckDemoMatch(Identifiers, ExistingEntries)

 End Function

End Class

[C#]

public class NewSystemMatch:ISystemMatch

{

 public bool CheckDemoMatch(Desaware.Dls.SystemIdentifierInfo[]

 Identifiers, Desaware.Dls.SystemIdentifierInfo[] ExistingEntries)

 {

 bool nicmacvalid = false, uservalid = false;

 foreach(SystemIdentifierInfo thisidentifier in Identifiers)

 {

 if (thisidentifier.Name == "User")

Page 88

 {

 foreach(SystemIdentifierInfo testidentifier in

 ExistingEntries)

 {

 if (thisidentifier.Value == testidentifier.Value)

 {

 uservalid = true;

 break;

 }

 }

 }

 if (thisidentifier.Name == "NICMAC")

 {

 foreach(SystemIdentifierInfo testidentifier in

 ExistingEntries)

 {

 if (thisidentifier.Value == testidentifier.Value)

 {

 nicmacvalid = true;

 break;

 }

 }

 }

 }

 if (uservalid && nicmacvalid) return true;

 return false;

 }

 public bool CheckInstallationMatch(

 Desaware.Dls.SystemIdentifierInfo[] Identifiers,

 Desaware.Dls.SystemIdentifierInfo[] ExistingEntries)

 {

 return CheckDemoMatch(Identifiers, ExistingEntries);

 }

}

Client Side Match Algorithm Registration

On the client side, you can use the RegisterMatchProcess method to register your System Match

algorithm.

[VB]

SystemMatch.RegisterMatchProcess(_

ClientLicense1.ApplicationName, New NewSystemMatch())

ClientLicense1.LicenseFilePath = _

Environment.GetFolderPath(Environment.SpecialFolder.Personal)

[C#]

SystemMatch.RegisterMatchProcess(

ClientLicense1.ApplicationName, new NewSystemMatch());

 ClientLicense1.LicenseFilePath =

Environment.GetFolderPath(Environment.SpecialFolder.Personal);

Page 89

Important Note:

As mentioned earlier, the Desaware Licensing System is designed for per machine/server

licensing. This example demonstrates a way to extend it to perform user licensing. Basically

you‟re tricking the licensing system into seeing one machine as a different machine for each

user. If you take this approach, remember to use the LicenseFilePath property of the client

license component to place the license certificate in a directory associated with each individual

user. The default location for license certificates is the project executable directory. If you leave

the default, each time a user does an install, the existing certificate for the previous user will be

overwritten!

Server Side Match Algorithm Registration

Server side matching algorithms are placed in a DLL assembly. You can have more than one

matching algorithm in each assembly.

In this example, the code from the NewSystemMatch.vb file from the previous example is

compiled into a separate DLL.

This DLL is placed in the bin directory of the licensing server.

Next, you must create or modify the configuration named Desaware.LicenseSer-ver.Dll.Config

file located in the same directory. Add an entry under the configu-

ration/SystemMatchAlgorithms section as shown here:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <SystemMatchAlgorithms>

 <add application="Test"

 value="ServerMatch.dll,ServerMatch.NewSystemMatch" />

 </SystemMatchAlgorithms>

</configuration>

The application attribute is the name of the application for this algorithm. Use the application

name “default” (case sensitive) to set the default algorithm for all applications.

The value attribute contains the name of the DLL containing your match algorithms, in addition

to the object name that implements the ISystemMatch interface described earlier.

Remember that this DLL executes in the context of the ASP. Net user (unless you have specified

a different account). If an exception is raised in your code, the licensing server will respond with

a Server Error to the current operation.

The Desaware Licensing System includes a SystemIDViewer utility that displays the SystemID

values for the default systemid fields (machine name, drive volume id, and network adapter) the

Licensing System verifies.

Creating Post Installation Actions

Not supported on the single application version of the licensing system.

Page 90

You can receive notification from the license server whenever a new entry is created in the

database.

To implement a post installation action, you must first add a reference to the assembly

Desaware.Dls.Interfaces.dll. This assembly contains the ILicenseDataEntry interface used for

post installation actions.

You then define a class that implements the Desaware.Dls.ILicenseDataEntry interface as shown

here:

[VB]

Imports Desaware.Dls

Public Class PostAction

 Implements Desaware.Dls.ILicenseDataEntry

 Public Sub LicenseDataEntered(ByVal UniqueInstallGUID As String, _

 ByVal EntryType As DataEntryTypes) Implements _

 Desaware.Dls.ILicenseDataEntry.LicenseDataEntered

 Dim entry As String

 Select Case EntryType

 Case DataEntryTypes.NewDemo

 entry = "New demo was created"

 Case DataEntryTypes.NewLicense

 entry = "New license was created"

 Case DataEntryTypes.UpdatedCustomData

 entry = "Custom data was updated"

 End Select

 Dim outputfile As New IO.StreamWriter("c:\temp\installog.txt")

 outputfile.WriteLine(entry & " - GUID: " & UniqueInstallGUID)

 outputfile.Close()

 End Sub

End Class

[C#]

public class PostAction: ILicenseDataEntry

{

 public PostAction()

 {

 }

 public void LicenseDataEntered(string UniqueInstallGUID,

 Desaware.Dls.DataEntryTypes EntryType)

 {

 string entry=null;

 switch(EntryType)

 {

 case DataEntryTypes.NewDemo:

 entry = "New demo was created";

 break;

 case DataEntryTypes.NewLicense:

 entry = "New license was created";

 break;

 case DataEntryTypes.UpdatedCustomData:

Page 91

 entry = "Custom data was updated";

 break;

 }

 StreamWriter outputfile = new StreamWriter(

 "c:\\temp\\installog.txt");

 outputfile.WriteLine(entry + " - GUID: " + UniqueInstallGUID);

 outputfile.Close();

 }

}

In this example, entries are simply logged. A more sophisticated application could access the

license server database to obtain the detailed information for this UniqueInstallGUID (a GUID

that identifies this installation) and perform any additional tasks. For example: you could extract

the CustomData sent with the certificate, and perform online registration tasks. The EntryType

indicates if the entry is a new license, a new demo license, or an update of custom data. A new

license or demo license EntryType may also include an update of custom data.

You must build this class into a DLL and place it in the bin directory of the licensing server.

Next, you must create or modify the configuration named Desaware.LicenseServer.Dll.Config

file located in the same directory. Add an entry under the configuration/LicenseDataNotify

section as shown here:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <LicenseDataNotify>

 <add application="Test"

 value="ServerMatch.dll,ServerMatch.PostAction" />

 </LicenseDataNotify>

</configuration>

Exceptions caused by your DLL will be ignored.

Adding data to license certificates

Not supported on the single application version of the licensing system.

You can add server generated data to a license certificate. This can be used to add information

that your application can use to fine tune licensing (for example: control the number of clients

that can access a service).

The server generated data consists of a byte array that you specify. The byte array is stored in the

.DLSC file under the ServerData tag. The data format is XML encoded base64 data.

The server generated data is not encrypted by default, however it is digitally signed and thus

cannot be modified.

Note: The following is a preliminary implementation of server data. A more

advanced version (or at least one easier to use) is planned for the next version.

However, this implementation will continue to be supported in future versions as

well.

Page 92

To add server generated data to a license certificate, you must create a class that contains the

public method “ProvideServerData” with the following declaration:

[VB]

Public Function ProvideServerData(ByVal appname As String, _

ByVal UniqueGuid As String, ByVal InstallationCode As String, _

ByVal CustomData As Specialized.StringDictionary) As Byte()

[C#]

public byte[] ProvideServerData(string appname, string UniqueGuid, string

InstallationCode, System.Specialized.StringDictionary CustomData)

Based on the information provided, you can return any byte data you wish.

At the time this function is called, your licensing database has already been updated with the

license information. The InstallationCode parameter will be null for demo installations. The

licensing system does not store the server data you provide – it just passes it on to the client.

If you wish to return a string, use the System.Text.UnicodeEncoding class to convert the string

into a byte array.

You can also define an object and serialize it using the Binary or Soap serialization mechanism.

Here‟s an example from the ServerMatch sample project in which a string is embedded in the

.DLSC file.

[VB]

Public Function ProvideServerData(ByVal appname As String, _

ByVal UniqueGuid As String, ByVal InstallationCode As String, _

ByVal CustomData As Specialized.StringDictionary) As Byte()

 Dim result As New Text.StringBuilder()

 result.Append("Installation date: " & Now())

 result.Append(ControlChars.CrLf)

 result.Append("Number of licenses: 50")

 result.Append(ControlChars.CrLf)

 result.Append("Override demo expiration: 1/1/2005")

 result.Append(ControlChars.CrLf)

 result.Append("License expiration date: 6/1/2006")

 result.Append(ControlChars.CrLf)

 Dim uc As New Text.UnicodeEncoding()

 Return uc.GetBytes(result.ToString)

End Function

[C#]

public byte[] ProvideServerData(string appname, string UniqueGuid, string

InstallationCode, System.Specialized.StringDictionary CustomData)

{

 System.Text.StringBuilder result =

new System.Text.StringBuilder();

 result.Append("Installation date: " +

System.DateTime.Now.ToString());

 result.Append("\n");

 result.Append("Number of licenses: 50\n");

 result.Append("Override demo expiration: 1/1/2005\n");

 result.Append("License expiration date: 6/1/2006\n");

 // Why a byte array? It provides the most flexibility

Page 93

// (say, if you're doing encryption),

 // and supports binary serialization of objects

 System.Text.UnicodeEncoding uc = new

System.Text.UnicodeEncoding();

 return uc.GetBytes(result.ToString());

}

You must build the class that provides server data into a DLL and place it in the bin directory of

the licensing server.

Next, you must create or modify the configuration file named

Desaware.LicenseServernn.Dll.Config located in the same directory (nn is 11 or 20 depending

on framework version). Add an entry under the configuration/ProvideServerData section as

shown here:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <ProvideServerData>

 <add application="Test"

 value="ServerMatch.dll,ServerMatch.ServerData" />

 </ProvideServerData>

</configuration>

The application string in the ProvideServerData section should be set to the name of your

Application as defined by the Licensing System. The value string format should be “<assembly

file name>,<Namespace.ClassName_Containing_ProvideServerData>”. Each application for

which you want to provide server data must have its own <add> key, and each application may

have more than one of these keys.

Unhandled exceptions caused by your DLL will be ignored.

If the file or object specified in the configuration file does not expose the ProvideServerData

function, or if the parameters of the function do not match, no server data will be provided and

the error will be ignored.

To retrieve Server Data on the client, you must parse the .DLSC file. Server Data can be found

by searching for the ServerData tag in the .DLSC file. The first child contains the Base64

encoded string representing the binary value.

The sample code shown also shows how to convert the binary data back into a string. If you used

a serialized object, you would (of course) call the appropriate deserializer here.

[VB]

 Dim xdoc As New XmlDocument()

 Dim xlist As XmlNodeList

 Dim data As String

 xdoc.Load("file path here")

 xlist = xdoc.GetElementsByTagName("ServerData")

 Try

 data = xlist.Item(0).ChildNodes(0).Value

 Dim result As String

 Dim bytes() As Byte

 Dim converter As New System.Text.UnicodeEncoding()

Page 94

 bytes = Convert.FromBase64String(data)

 result = converter.GetString(bytes)

 End Try

[C#]

 XmlDocument xdoc = new XmlDocument();

 XmlNodeList xlist;

 string data;

 xdoc.Load("file path here");

 xlist = xdoc.GetElementsByTagName("ServerData");

 try

 {

 data = xlist.Item(0).ChildNodes.Item(0).Value;

 string result;

 Byte[] bytes;

 System.Text.UnicodeEncoding converter =

new System.Text.UnicodeEncoding();

 bytes = Convert.FromBase64String(data);

 result = converter.GetString(bytes);

 textBox1.Text = result;

 }

 catch

 {}

The information shown here illustrates how you can provide additional information to use during

client licensing. You could use it to specify a limit to the number of clients, or to override the

demo expiration date, or set an expiration date for the DLSC file, or to otherwise provide any

other kind of licensing functionality that depends on data from the server.

The Licensing System includes support for encrypting and decrypting ServerData. In the

previous sample project, you would add a reference to the Desaware.MachineLicense.dll

assembly file, then change the ProvideServerData function to the following if you want to return

encrypted ServerData.

[VB]

Public Function ProvideServerData(ByVal appname As String, _

ByVal UniqueGuid As String, ByVal InstallationCode As String, _

ByVal CustomData As Specialized.StringDictionary) As Byte()

 Dim result As New Text.StringBuilder()

 ' build your ServerData string as before using the result variable

 :

 :

 Dim ClientLicense1 As New ClientLicense()

 Dim subiv() As Byte = {11, 36, 212, 124, 48, 10, 216, 79, 95, 19, 241,

184, 26, 43, 150, 151}

 Return ClientLicense1.EncryptServerData(appname, subiv, result.ToString)

End Function

[C#]

public byte[] ProvideServerData(string appname, string UniqueGuid, string

InstallationCode, System.Specialized.StringDictionary CustomData)

{

 System.Text.StringBuilder result = new System.Text.StringBuilder();

Page 95

 // build your ServerData string as before using the result variable

 :

 :

 ClientLicense ClientLicense1 = new ClientLicense();

 byte [] subiv = {11, 36, 212, 124, 48, 10, 216, 79, 95, 19, 241, 184, 26,

43, 150, 151};

 return ClientLicense1.EncryptServerData(appname, subiv,

result.ToString());

}

Similarly, when decrypting encrypted ServerData, use the ClientLicense class‟s

GetEncryptedServerData function.

[VB]

 Dim xdoc As New XmlDocument()

 Dim xlist As XmlNodeList

 Dim data As String

 xdoc.Load("file path here")

 xlist = xdoc.GetElementsByTagName("ServerData")

 Try

 data = xlist.Item(0).ChildNodes(0).Value

 Dim result As String

 Dim subiv() As Byte = {11, 36, 212, 124, 48, 10, 216, 79, 95, 19,

241, 184, 26, 43, 150, 151}

 result =

ClientLicense1.GetEncryptedServerData(ClientLicense1.ApplicationName, subiv,

data)

 End Try

[C#]

 XmlDocument xdoc = new XmlDocument();

 XmlNodeList xlist;

 string data;

 xdoc.Load("file path here");

 xlist = xdoc.GetElementsByTagName("ServerData");

 try

 {

 data = xlist.Item(0).ChildNodes.Item(0).Value;

 string result;

 byte [] subiv = {11, 36, 212, 124, 48, 10, 216, 79, 95, 19, 241,

184, 26, 43, 150, 151};

 result =

ClientLicense1.GetEncryptedServerData(ClientLicense1.ApplicationName, subiv,

data);

 }

 catch

 {}

Page 96

Refer to the FriendlySecurityServerData and CustomServerData sample projects for more

details.

Additional ServerData Considerations

It is extremely important to understand the nature of the UniqueGUID parameter provided to the

ProvideServerData function. The UniqueGUID value is assigned to each unique system that is

identified by the licensing system. But what is a unique system?

The licensing system assigns a unique GUID to a certificate based on the installation match

algorithm. As described earlier under system matching algorithms, given the fact that hardware

can change, and algorithms can vary (if you create custom algorithms), it is very possible for two

systems to end up with the same UniqueGUID value. It is also possible that the Custom Data in

the database will not reflect the current installation (in cases where the Installation Match

algorithm passes, but the Demo Match algorithm fails – custom data is only updated in the

database when the higher standard of system match is present).

In order to provide you additional flexibility in identifying systems, the ProvideServerData

function includes a CustomData parameter. This parameter is a StringDictionary containing the

Custom Data that was actually sent in the current installation request.

You can have your client code add additional custom data that identifies the installation, or user,

and use that information to help generate the Server Data. Note, however, that changes to the

contents of this parameter will not modify the custom data in the certificate.

The rule is this: Custom Data is always set on the client and is not modified by the server. Server

Data is always set on the licensing server, and is not modified by the client.

Page 97

The Desaware Licensing System: Interview with the Architect
Rather than the traditional, somewhat “dry” approach for introducing a product, we thought

we’d try something different. In this article you’ll find an interview with Dan Appleman,

architect of the Desaware Licensing System, in which he discusses the philosophy and design of

the system, along with common licensing scenarios and tradeoffs involved.

What prompted you to develop a new licensing system?

Like virtually every product we develop, it starts out with a problem that we or our current

customers need to solve. We had received a number of requests for a licensing scheme that

would license software to a particular machine or server. And with the development of our own

CAS/Tester and 5-Minute Software line, we also needed this capability. Rather than come up

with a custom solution, we decided to come up with a system that would be adaptable to a

variety of scenarios and offer it to our customers.

So you came up with a flexible system that could be adapted to any
Windows licensing need?

Oh no! Definitely not. When it comes to licensing, the more features you have, the more chances

you‟ll have some kind of security hole. No, our focus was on security, and ease of use and

deployment. There is flexibility, and definitely extensibility, but the base system just supports a

particular set of scenarios very well.

I want a really secure licensing system that will make it very difficult
for someone to pirate my code. Will your system do this?

Yes. You can be extraordinarily strict and secure.

I want a very friendly licensing system, that will tolerate system
changes, work within an Internet connection, and be as “friendly” as a
licensing system can be. Will your system do this?

Yes. But remember – the more tolerant you are, the easier it is to bypass your licensing. But

that‟s really a matter of your corporate philosophy.

We include implementations for several different scenarios with the product, ranging from very

strict, to very tolerant.

And, for those who are interested, Desaware uses the more tolerant licensing philosophy.

One thing I noticed is that you only support licensing of .NET
components and applications. Why is that?

It‟s not just because we are focused on .NET now. But to explain it I‟ll have to talk a bit about

more traditional licensing approaches.

Here‟s the first thing you have to realize. Any licensing system that is not based on server

activation is breakable.

Page 98

Any licensing system not based on server activation is breakable?

It‟s true. Sure, you make it hard to break the security, but no matter how good the encryption on

the installation code you use, there‟s nothing to prevent someone from using it on multiple

systems unless you have an outside secured system to keep track each time an installation code is

used and which system it‟s used on.

Traditional licensing schemes use a variety of techniques – from hidden files to obfuscated

registry entries to proprietary services (which are rather too invasive on a system for my taste).

They are all based on secrets.

Secrets can be discovered. Security can be bypassed by modifying (cracking) the licensed

application or the licensing software itself.

I wanted a system that is end to end cryptographically secure – meaning that the level of security

depends on the strength of the cryptography and not on any secret information.

How are .NET assemblies different from other Windows components
and applications?

The .NET framework allows developers, for the first time, to cryptographically sign each

assembly. This happens any time you give an assembly a “strong name” using a private key that

you create. There are two important thing about strong names: First, it is impossible to modify a

strong named assembly. If you try, the .NET runtime will detect the change and refuse to run the

assembly. Second, it is impossible to tamper with a dependent assembly. In this case it means

that once you use our licensing component to add licensing to your assembly, it is virtually

impossible to bypass it. You can‟t modify the licensed assembly. You can‟t modify our licensing

component. And you can‟t swap out our licensing component for another.

You used the term “Cryptographically Secure”. I also noticed you said
“Virtually impossible”. Exactly how secure are we talking about?

Cryptographically secure means to things. First, that the level of difficulty depends on the

strength of the cryptographic algorithm and key. We use 128 bit encryption in the Desaware

Licensing System, which means there are 2
128

 possible keys. Finding the correct key would take

longer than the life of the Universe using today‟s technology, so the real risk in breaking this

security is that someone will steak your key.

It also means that the security depends purely on the strength of the key, and not on any secret

information. You should be able to publish the source code for the licensing system and not

compromise the security. In fact, we do offer a source license to the Desaware Licensing System

for those who want it.

You mentioned that secure licensing requires connection to a server,
does that mean you have to have an Internet connection to activate
software licensed with our system?

Not necessarily. If you want cryptographically strong security, then yes – you have to have a

connection to a server. But we also wanted to support other scenarios – cases where an Internet

connection isn‟t allowed or available, or where you want to support cases where the licensing

server is down. So, for those who are willing to accept weaker security, we support deferred

Page 99

activation. When you install licensed software our licensing component creates a temporary

license. It will try to obtain a permanent license each time you run the program. It‟s up to you to

decide what to do if it can‟t obtain a license. You could do a timed activation – like Microsoft,

where you have to activate within a certain set time like 30 days. Or you can simply allow the

software to keep running on the temporary license forever.

We also have a mechanism that allows you to validate temporary licenses received via other

channels such as Email or even floppy disk, allowing you to enforce cryptographically secure

licensing even if an Internet connection is unavailable.

Changing the Subject, you mentioned that a licensing system has to
track use of installation codes and which systems they are installed
on. Doesn’t this compromise your end user’s privacy?

That was actually one of the critical design issues. I wanted a system that could determine if an

installation code was being used on multiple systems, but which would not compromise the

privacy of the computer on which the licensed software is installed. Fortunately, cryptography

provided an answer to this problem as well. Rather than basing system identification on

information from the client system, we based it on cryptographic hashes of information from the

client system.

To give you an idea of how this might work, let‟s say one of the ways a system is identified is by

the name of the computer, and the computer is named “myComputer”. We don‟t actually send

the word “myComputer” to the licensing server, we send a 256 bit hash of that value. This allows

us to identify the computer in the license server database, but it would be impossible to go back

and obtain the computer name given the hash value.

What kinds of system information do you use to identify a system?

By default we use the computer name, system disk volume ID, and the addresses of any Internet

adapters. However, you can extend the system by writing your own code to identify systems.

You can add other identification information, and define your own algorithm to determine

whether two systems are identical.

What about demonstration or trial installations?

The Desaware licensing system does support timed demonstration installations, where you can

define the duration of the demonstration period. Like installations, the demo installation connects

to the licensing server to provide high security. For example: if a demo installation expires and

you uninstall it, any attempt to reinstall the demo on the same system will be flagged by the

server and you‟ll see a demo-expired error. Connecting the server also ensures that the demo

certificate is based on the server date, reducing the chance that someone can create a longer

demo period by changing their system date.

Can you give me an idea of how the Desaware Licensing System
works? What is the typical sequence of events?

The system consists of two parts: The client licensing component

(Desaware.MachineLicense.Dll) and the server licensing service (Desaware.ServerLicense). The

Page 100

service is a .NET web service that can run in a virtual directory of any IIS system that has the

.NET framework installed.

There is also a license manager application that works with the web service to allow you to

manage the licensing system (create applications, installation codes, etc.).

Your first step in licensing an application is to use the license manager to define the application.

The license manager also creates a resource file that your developers will use. This resource file

contains the application‟s public key and some other information. You‟ll also use the license

manager to create installation codes.

Your developers will then add the client component to the applications to be licensed. This is a

very simple process – you just create the component, and add a few lines of code to verify if a

license exists.

The developers also decide how the client will install the license – where will the installation key

be entered by the user. You can do this during installation, or allow users to enter installation

keys into existing demo installations.

When the user installs the licensed product, they enter the installation code that came with the

product (one you created using the license manager). The licensing component then connects to

your web service and makes sure the installation code is valid, and that the code has not been

previously used on another system. If licensing is successful, a digitally signed certificate is

installed on the local system. When the licensed application runs it checks the certificate, and

makes sure it matches the current system and has not been tampered with.

There are variations available, for example: whether or not you support demonstration mode,

how you deal with license violations and what you consider a license violation, and what you do

when there is not Internet connection, but these are easy to define and handle.

So each installation code can only be used on a single system?

Oh no – I hope I didn‟t give that impression. Sure, you can set it up that way, however we prefer

to give people a bit more flexibility. You can set two numbers – a warning number and a

blocking number. The warning number is the number of computers that can use the same

installation code before the server returns a warning. With a warning, the server still returns a

valid license, but it returns a result letting you know that a violation may be occurring. The

blocking number is the number of computers that can use the same installation code before the

server rejects the installation code.

What is the maximum number of computers that can share an
installation code?

There‟s no practical limit. In fact, for site licenses you might prefer to give a customer a single

installation code to use on all their systems rather than giving them a large number of installation

codes. And yes, you can easily add to the number of computers that can use an installation code.

Page 101

Let’s say a user installs software on a system, then copies the
directory containing the application to another system. Will the
application work?

Probably not. If the other computer has a matching system identifier, and your computer

matching algorithm allows it, it will run, but our default algorithm is such that it is extremely

unlikely that two different computers will match. And the license certificate is bound to a

specific system.

What if someone tries to modify the license certificate?

The license certificate returned from the server is digitally signed using the private key of the

application. So any attempt to tamper with the certificate will result in an “invalid certificate”

error which is considered a license violation.

What happens if a license violation occurs?

That‟s up to you. The client license component does not include a user interface, or decide for

you how you want to respond to a license violation. We do include samples of several scenarios.

What if I want two versions of a component or several executables to
be licensed together - using the same installation code?

No problem at all. The Desaware License Server works with what we call “applications”, which

is a name you define. Every assembly that uses the same application name can share installation

codes and license certificates. If you revise a component, and want it to continue to use the

previous installation code and license certificate, just use the same application name.

The .NET Framework has a licensing scheme for components based
on the LicenseProvider class. Does your system use this?

The Desaware Licensing System does support license providers for components if you wish.

That‟s a good approach for components which are licensed only for design time and are

redistributable at runtime. We support license providers as part of our licensing system, however

the core system is designed for per machine/server licensing and does not use the require use of

.Net license providers.

My customers are developers who often have multiple operating
systems on their system (multi-boot). Do they need a different
Installation Code for each partition?

Probably not. The default system identification algorithm we use includes the network card

address which is the same under each OS. So your customers can just reinstall your software

under each partition and their same installation code will work. You can change this by defining

your own system identifier and matching algorithm.

Can I do per-user licensing?

We do not support this feature by default. However, you can define a system identifier that is

based on the user or account information, and then define a system matching algorithm that

Page 102

considers each user to effectively be a different licensed machine. This is demonstrated in the

example that illustrates how you can extend the licensing system.

Can I do per-feature licensing?

This feature allows you to have a single application support several features, each of which is

enabled independently. The Desaware licensing system supports this easily. Just as you can have

multiple assemblies licensed as a single application, you can have one assembly licensed as

multiple applications. In other words: you define a new “application” in the licensing system for

each feature you want to enable. In your assembly, you will have a resource file and instance of

the licensing component for each feature – and each feature will have its own license certificate.

You can then verify each one independently.

How is the Desaware Licensing System itself licensed? How many
applications can I license? Are there any hidden costs?

I actually saw a licensing product once that wanted to charge a percentage of revenue of the

licensed software. Hard to believe, isn‟t it?

Our story is much more simple and quite economical. The Desaware Licensing System is itself

licensed using its own technology.

The client license component and License Manager application is licensed on each developer or

administrator seat. There is no redistribution fee for including the component with your licensed

applications.

The licensing service is licensed per server. Each service can support an unlimited number of

applications.

In practice, you need a minimum of one server and one client license.

We also offer site licenses and source code licenses.

Do I need a secure server (SSL) for my license server?

No. All information between the client component and the server is encrypted by the components

themselves. There is no need for connecting to the server via SSL. It will only reduce

performance.

How long is your installation code?

26 characters. Yes, I know it‟s long, but we wanted to support full 128 bit encryption across the

board. The good news is that the code is limited to upper case characters, and excludes certain

potentially confusing letters like I and O (which can be confused with 1 and 0). We logically

divide into 5 groups of 5 characters, plus one trailing character. And we include an installation

code control which you can drop into your user interface to acquire the code.

Can I collect additional information (such as registration information)
during the licensing process?

Yes you can. We call this “custom data”, and you can add this to the licensing certificate and it

will be sent to the server during the activation process. Remember that any information you

collect should adhere to your organization‟s privacy policy. Our license manager allows you to

Page 103

view this custom data. We also publish our database schema so you can access the data directly.

And there‟s a mechanism for the server to execute a component you provide every time an

installation occurs.

Can I license windows form controls or other software intended to be
downloaded via Internet or intranet?

The .NET framework runs downloaded software with limited permissions, also known as “partial

trust”. The Desaware Licensing System can be used to license partially trusted code, but only if

the licensing component is first installed in the global assembly cache as a fully trusted

component.

What version of the .NET Framework do you require?

We include components build with both the 1.1 and 2.0 versions of the Framework. Either

version of the client licensing component can communicate with either version of the licensing

server. You must use the latest 1.1 server components if you wish to support the 2.0 framework

client component..

Are there any other requirements for the Desaware Licensing
System?

Yes, but there aren‟t many.

 Obviously, both client and server software must be running the .NET framework.

 The server must be on Windows 2000 or greater running Internet Information Server with
ASP.Net.

 You need a database on the server. The licensing server works with SQL server, MSDE,
or JET (Access). You can also use any OleDB compliant database (or ODBC if using the

1.1 or later version of the .NET framework)

 128 bit encryption. Sorry, we don‟t support a 40 bit option.

Tell me some of the things the Desaware Licensing System can’t do.

No software package can do everything, and we‟d rather you know the limitations up front.

 This form of licensing is not good for components that are intended to be embedded into
other components. That‟s both because the .NET component licensing system is not

particularly good at handling this case, and because it wasn‟t a design requirement for the

current version of the product. So if you‟re creating a control intended to freely

distributable as part of another control that has a different licensing scheme, you should

look elsewhere. However, if you‟re creating a control or component for use on Windows

forms, web forms, etc. and you want per machine/ per server licensing (either always, or

just at design time), this system will work just fine.

 It won‟t work in France. Wait, that‟s not entirely true. France has rather severe

limitations on use of cryptography, thus portions of the Windows encryption system

simply don‟t work on French versions of Windows. So the licensing server must run on a

version of Windows that supports public/private key encryption. The system is designed

Page 104

to work with clients that run on French Windows, with the limitation that communication

with the licensing server is not secure.

 We don‟t implement concurrent Licensing (where you allow a certain number of systems
to run simultaneously). This feature is not supported in the current version of the

Desaware licensing System. One reason is performance and reliability – we wanted a

system that only needed to connect to the licensing server once, not each time the

program ran. You can create your own web service that tracks concurrent users that is

based on our licensing system (using information from the license certificate, and tying

into the licensing database on the server), but we do not yet provide an implementation

that does this.

Page 105

More FAQ’s

Why don’t you have a trial installation that counts the number of
times an application is used?

You can implement such a scheme if you wish, but unless you connect to the server each time

the application is run, it isn‟t possible to make such an approach cryptographically secure. Any

scheme that hides the usage count on the local system is breakable. So we did not build in

support for this approach.

Is an Installation Code Reclaimed when and application is
uninstalled?

No. Think about it – if you allowed an installation code to be reclaimed when software was

uninstalled you would have no security at all. Anyone could do an install, save the directory or

partition, do an uninstall, then restore the directory or partition and bypass your security

completely.

The License Manager and Licensing web service make it easy for you to reenable an installation

code if you wish. But you‟ll need to add dealing with this situation into part of your customer

service program.

What happens if I reinstall software on a licensed system using a
different installation code?

If the demo system matching algorithm determines that the system is identical to one seen

before, the new installation code will replace the existing one in the licensing database.

However, if there is any doubt, the system will end up using two installation codes. So you

should try to avoid using different installation codes on the same machine.

What are the most important things I should do to secure my license
service?

1. Make sure the Management.asmx web service entry point is secured either by IP filter or

by roles. The default installation enables access only by the server itself.

2. Limit access to the licensing database. That‟s where the application passwords and

private keys are kept – you don‟t want anyone outside to get a hold of it.

We do a number of things to help protect you even if outsiders can connect to the management

service. For one thing, there is no way to retrieve the private key from the database using the

service. Also, the service does not delete information from the database (except for replacing

custom data under certain circumstances).

What if someone installs a demo/trial version on a system that already
has (or had) a full installation?

In most cases you‟ll get a demo expired error. When you do a full installation on a clean system,

it writes the current date into the database as the expiration date, thus prohibiting later demo

installs. However, if you start with a demo install, then do a full install, then do a demo install, it

Page 106

should succeed with a warning, and the expiration date will be based on the first time the demo

was installed (this, of course, applies to a scenario where the server is accessible).

Oh no! Someone hacked my system and copied my licensing
database! Is all lost?

Well, if they deleted it you‟re in trouble. People with valid install codes won‟t be able to use

their software. So you should be sure to keep backups (which you do because you backup your

server regularly, right?)

But even if they have a copy of your database, things aren‟t too bad. Yes, they can generate keys

that will pass the first pass verification, but they still can‟t add new keys to your database or

work with it as long as the Management.asmx file is secured. They can‟t redirect software you

ship to a different server because the licensing URL is typically hard coded into your software.

They would be able to generate fake installations for installation codes they know about, but

that‟s probably more an annoyance than serious problem.

All you need to do in this case is ship out a new version of your software using a newly created

application. Because each application has its own private key, the damage to losing one is

limited to that application.

Page 107

Appendices

Glossary

Desaware Licensing System – The name of this product.

Licensing Server – The web service used implement the licensing system.

License Manager – The Windows forms application used to manage applications and licenses. It

connects to the Licensing Server.

The Machine License Component – Desaware.MachineLicense.Dll. The component used in your

licensed applications and components. Use it to both install and verify licenses.

Application – Any group of one or more assemblies that are licensed together. The name of the

application bears no relation to the assembly names. The same license certificate will enable all

assemblies that belong to an application. More than one version of an assembly can be part of an

application. Different versions of an assembly can belong to different applications.

License Certificate – (DLSC file) This is an XML document that is used by the licensing system

to indicate that a specific application is licensed for a specific machine. It can be temporary or

signed.

Signed License Certificate – This is a License Certificate that has been digitally signed by the

server to indicate that it is valid.

Temporary License Certificate – This is a temporary certificate installed when the server cannot

be reached. Use of temporary certificates is optional.

Demo License Certificate – A license certificate that does not contain an installation code.

Configuring the Web Service web.config File

The license server web.config file contains a number of entries in the appSettings section that are

used by the license server. Each one follows the standard application configuration file schema

of an <add key=… value=> tag.

The following keys are supported:

ipfilter A list of IP addresses that can access the Management.asmx

entry point. The format is a.b.c.d[-e.f.g.h], where each entry is a

single or range of IP addresses. Entries may be separated by

semicolons.

If no ipfilter entry is found, the local system (127.0.0.1) is

assumed.

allowedroles One or more roles in the form system|domain\user|role

indicating the accounts allowed to access the Management.asmx

entry point. If none are specified, only the ipfilter is used.

connectiontype The string “oledb”, “sql” or “odbc” (>1.1. Framework)

Page 108

indicating the type of database provider to use.

connectionstring The connection string used by the license server to connect to

the licensing database.

Read the section “Testing and Debugging the License Server Installation” for additional

information on modifying default settings of the web.config file.

Database Schema and Contents

You may wish to connect directly to the database for a variety of reasons, including extracting

registration data, or integrating the licensing system into your own database.

Please note that the default configuration of the database does not enforce referential integrity –

so we strongly suggest you do not modify any entries in the database unless you really know

what you‟re doing.

This document limits itself to a description of each column. You can examine the database

directly for information on field types and sizes. Each table includes an ID column as primary

key. This column is not used by the licensing server.

Application Table

ApplicationName Name of the application

ApplicationDescription Description

WarningCount Number of installs allowed before a reuse warning.

BlockCount Number of installs allowed before a code is rejected.

DemoExpirationDays Default and max number of days a demo version is valid.

ApplicationPassword Password used for first pass verification and temporary

certificates.

SignatureKey Public/Private key

Identifiers Reserved for future use.

InstallationCodes Table

CodeGUID GUID value of this installation code.

ApplicationName Name of the application for this code.

WarningCount Warning count for this code. Default value is set from

the application table.

BlockCount Block count for this code. Default value is set from the

Application table.

UserDefined Available for your use. Up to 255 characters.

CodeStart First 5 letters of the installation code in normal format.

Page 109

Used for searches.

UniqueInstalls Table

UniqueInstallGUID GUID identifying a specific installation.

DemoExpiration Expiration date if demo.

InstallationDate Date of first install.

CodeGUID Installation code used on this installation. Null for demo

install.

ApplicationName Name of the application installed.

SystemIdentifiers Table

Name Name of this system identifier.

Value Value of this system identifier.

UniqueInstallGUID GUID identifying a specific installation.

CustomData Table

CustomName Name of this custom name.

CustomValue Value of this custom name.

UniqueInstallGUID GUID identifying a specific installation.

Installation and Existing Certificates

What happens when you do an installation on a system where a license certificate already exists?

There are eight possible certificates that can be installed.

 Valid demo cert (temp)

 Invalid demo cert (temp)

 Valid demo cert (signed)

 Invalid demo cert (signed)

 Valid full cert (temp)

 Invalid full cert (temp)

 Valid full cert (signed)

 Invalid full cert (signed)

There are four installation cases:

 Demo install activation required.

 Demo install activation optional.

 Full install activation required.

 Full install activation optional.

Let‟s consider each option in detail.

Page 110

For activation optional results, there are fatal and non-fatal errors. A fatal error is one in

which the server rejects the license. A non-fatal one is one in which the server cannot be

reached.

Fatal errors include:

 Invalid certificates sent from the
client.

 Code reuse is blocked.

 Demo has expired.

 Install code is invalid.

Demo install, activation required:

Existing Certificate Success Failure

Valid demo cert (temp) Overwrites existing Leaves existing

Invalid demo cert (temp) Overwrites existing Leaves existing

Valid demo cert (signed) Overwrites existing Leaves existing

Invalid demo cert (signed) Overwrites existing Leaves existing

Valid full cert (temp) Leaves existing Leaves existing

Invalid full cert (temp) Leaves existing Leaves existing

Valid full cert (signed) Leaves existing Leaves existing

Invalid full cert (signed) Leaves existing Leaves existing

In other words, if you do a demo install on a system that the server believes is already
fully registered, the software will assume that any existing certificate is that full license

certificate, and will leave it in place. The software does not actually check what kind of

certificate is currently on the system – it bases its information purely on the server

records, so if the certificate is not a full certificate or is invalid, doing a demo install will

not overwrite it. You can override this behavior by verifying the existing certificate and

deleting it before doing the install.

Demo install, activation optional:

Existing Certificate Success Deferred Fatal Error

Valid demo cert (temp) Overwrites existing Installs temp cert No Cert

Invalid demo cert (temp) Overwrites existing Installs temp cert No Cert

Valid demo cert (signed) Overwrites existing Installs temp cert No Cert

Invalid demo cert

(signed)

Overwrites existing Installs temp cert No Cert

Valid full cert (temp) Overwrites existing Installs temp cert No Cert

Page 111

Invalid full cert (temp) Overwrites existing Installs temp cert No Cert

Valid full cert (signed) Overwrites existing Installs temp cert No Cert

Invalid full cert (signed) Overwrites existing Installs temp cert No Cert

An activation optional demo install always overwrites the existing certificate with a

temporary certificate before contacting the server. If a non-fatal error occurs, that temp

certificate remains installed. Otherwise the temp certificate is deleted and the software is

unlicensed.

You can override this behavior in your install program by checking first for a valid

license and not allowing the demo install if the full license is present.

Full install, activation required:

Existing Certificate Success Failure

Valid demo cert (temp) Overwrites existing Leaves existing

Invalid demo cert (temp) Overwrites existing Leaves existing

Valid demo cert (signed) Overwrites existing Leaves existing

Invalid demo cert (signed) Overwrites existing Leaves existing

Valid full cert (temp) Overwrites existing Leaves existing

Invalid full cert (temp) Overwrites existing Leaves existing

Valid full cert (signed) Overwrites existing Leaves existing

Invalid full cert (signed) Overwrites existing Leaves existing

Page 112

Full install, activation optional:

Existing Certificate Success Deferred Fatal Error

Valid demo cert (temp) Overwrites existing Installs temp cert No Cert

Invalid demo cert (temp) Overwrites existing Installs temp cert No Cert

Valid demo cert (signed) Overwrites existing Installs temp cert No Cert

Invalid demo cert

(signed)

Overwrites existing Installs temp cert No Cert

Valid full cert (temp) Overwrites existing Installs temp cert No Cert

Invalid full cert (temp) Overwrites existing Installs temp cert No Cert

Valid full cert (signed) Overwrites existing Installs temp cert No Cert

Invalid full cert (signed) Overwrites existing Installs temp cert No Cert

Working with proxy servers

The Desaware.MachineLicense component uses SOAP over http to communicate with

the server. It is essential that any firewalls be configured to allow SOAP headers to pass.

By default the licensing component uses the default proxy settings for Internet Explorer.

However, you can manually configure the proxy server settings for your application in its

application configuration file (assuming you provide one). This file can be edited with

any text editor or XML editor.

It is essential that the modifications be done exactly as shown.

Find the end of the file. Before the last line (</configuration>) add the following:

 <system.net>

 <defaultProxy>

 <proxy autoDetect="False" bypassonlocal="True"

proxyaddress="http://proxyaddress:proxyport" />

 </defaultProxy>

 </system.net>

Edit the autoDetect, bypassonlocal, proxyaddress and proxyport elements as follows:

autodetect – Specifies whether the proxy is automatically detected

bypassonlocal – Specifies whether the proxy is bypassed for local resources (such as

127.0.0.1, http://localhost, etc.)

proxyaddress:proxyport – Specifies the proxy URI and port to use.

When you restart the application, the manual proxy settings will take effect for this

application.

If your proxy server authenticates connections, you may need to modify the

<defaultProxy> element to be <defaultProxy useDefaultCredentials="True">

http://localhost/

Page 113

Version History - 1.2 Update

The version 1.2 update is identical to version 1.1 except that it includes native

components for .NET 2.0. The .NET 1.1 client components are fully compatible with the

.NET 2.0 server.

To use the .NET 2.0 client components with the 1.1 server you MUST install the

updated 1.1 framework server components. This is necessary to resolve a change in

the .NET framework in the way dates are serialized. The .NET 2.0 client

components are not compatible with the 1.0 server. This also applies to older

MachineLicense components running under the .NET 2.0 framework. The .NET 1.1

MachineLicense component included with this release is a drop-in replacement for

the previous version and will work under the .NET 2.0 framework with the updated

server.

The remainder of this section refers to the 1.1 update.

License Server

 Improved web server diagnostics helps resolve unusual configuration and
installation issues. Supports toggling of diagnostics in the web.config file. Note

that the web.config file now has diagnostics turned on by default. You need

to disable this when done testing (comment out the key <add

key="enablediagnostics" value = "true" />).

 New GetServerDate function added to the web service Activator.asmx to return a

DateTime object based on the server date.

MachineLicense

 New InstallationDate property in the ClientLicense object. This property is valid

after a call to the VerifyLicense function. The InstallationDate property returns

the installation date recorded in the license certificate file.

 New ExpirationDate property in the ClientLicense object. This property is valid
after a call to the VerifyLicense function. The ExpirationDate property returns the

demo expiration date recorded in certificate file.

 New DemoRequireInternet property in the ClientLicense object. This property
allows you to require an internet connection for demo licenses. If this property is

set and a demo license exists, the ClientLicense object will attempt to retrieve the

date and time from multiple servers on the internet when the VerifyLicense

function is called. It will use the internet time rather than the system time to

compare whether the demo has expired or not.

 New DemoNoInternetDate ValidationStatus result. Returned when a demo

certificate is verified, the DemoRequireInternet property is set and the internet

time servers cannot be reached.

Page 114

Samples

 Updated High Security and Friendly Security samples to demonstrate use of the
new features.

 New sample demonstrating how to implement "module licensing" based on
multiple "Applications".

 Advanced sample of System ID and System match algorithm to make the

software more secure.

 Example showing how to retrieve CustomData (XML data) from the certificate
file (registration information).

 New sample demonstrating how to encrypt and decrypt Server Data.

Utilities

 New License Manager includes many new features including:

o Support for integrated Windows authentication

o Ability to authenticate remotely thru a web service.

o New BindingCheck code generator utility – additional code verification

that your assembly has not been tampered with.

 Application Note on how to prevent reverse engineering and additional strong

name checking to verify that your assembly has not been modified.

 Includes new SystemID utility – displays SystemID information as hash values.
Will allow you to match SystemID information on your customers systems

without requiring them to disclose private system information.

 Includes the compiled edition of the QND Obfuscator – protect your code from
decompilation.

Single Application Edition

Version 1.1 introduces a new lower cost edition of the licensing system. This version has

the following limitations:

 Supports a single application (the standard licensing system supports licensing of
unlimited applications).

 Allows up to 1000 installation codes (the standard licensing system has no limit).

 Does not support signing of external DLSC files.

 Does not support server data or post install actions (licensing server extensibility).

The single application edition is easily upgraded to the full edition. See the section on

Advanced Menu/Hosted Install for details on upgrading.

